
Foliated spaces

A smooth subbundle F of TV is called integrable iff one
of the following equivalent conditions is satisfied :

a) Every x ∈ V is contained in a submanifold W of V

such that

Ty(W ) = Fy ∀ y ∈ W .

b) Every x ∈ V is in the domain U ⊂ V of a submersion
p : U → Rq (q = CodimF ) with

Fy = Ker(p∗)y ∀ y ∈ U .

c) C∞(F ) = {X ∈ C∞(TV ) , Xx ∈ Fx ∀x ∈ V } is a
Lie algebra.

d) The ideal J(F ) of smooth exterior differential forms
which vanish on F is stable by exterior differentia-
tion. 1



A foliation of V is given by an integrable subbundle F of

TV . The leaves of the foliation (V, F ) are the maximal

connected submanifolds L of V with Tx(L) = Fx, ∀x ∈
L, and the partition of V in leaves V = ULα, α ∈ A

is characterized geometrically by its “local triviality” :

every point x ∈ V has a neighborhood U and a system

of local coordinates (such charts are called foliation

charts) (xj)j=1,...,dimV so that the partition of U in

connected components of leaves (called plaques, they

are the leaves of the restriction of F ) corresponds to the

partition of RdimV = RdimF × RCodimF in the parallel

affine subspaces RdimF × pt.
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In the simplest examples, such as the Kronecker folia-

tion of the 2-torus V = R2/Z2 given by the differential

equation dx = θ dy where θ /∈ Q, one sees that :

1) Though V is compact, the leaves Lα, α ∈ A can fail

to be compact.

2) The space A of leaves Lα, α ∈ A can fail to be

Hausdorff and in fact the quotient topology can be

trivial (with no non trivial open subset).
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Noncommutative Quotient

When passing to the quotient, if we just consider inva-

riant functions we obtain a very poor algebra of func-

tions, since, even at the measurable level, we would

only have constant functions. If instead we consider the

noncommutative algebra of functions obtained by the

general recipe of “noncommutative quotients” (func-

tions on the graph of the equivalence relation with the

convolution product), we obtain a very interesting and

highly non–trivial algebra of functions describing the

space of leaves of the foliation.
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This is given (in the topological category) by the “ir-

rational rotation algebra”, i.e. the C∗-algebra

Aθ := {
(
aij
)

i, j ∈ T in the same leaf }.

Namely, elements in the algebra Aθ associated to the

transversal T ≃ S1 are just matrices (aij) where the in-

dices are arbitrary pairs of elements i, j of S1 belonging

to the same leaf.
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Noncommutative torus C∞(T2
θ)

Aθ is generated by two unitaries (U, V ) with presenta-

tion given by the relation

V U = λUV, with λ = exp(2πiθ) .

If we work in the smooth category, then a generic ele-

ment b is given by a power series

b =
∑
Z2

bnmUnV m ∈ S(Z2)

where S(Z2) is the Schwartz space of sequences of rapid

decay on Z2.
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Smooth structure

The tangent space to the ordinary torus T2 is spanned

by the tangent directions ∂
∂x and ∂

∂y. By choosing coor-

dinates U, V , with U = e2πix and V = e2πiy, the tangent

vectors are given by ∂
∂x = 2πiU ∂

∂U and ∂
∂y = 2πiV ∂

∂V .

These have analogs in terms of derivations of the alge-

bra of the noncommutative torus. The two commuting

vector fields which span the tangent space for an or-

dinary (commutative) 2-torus correspond algebraically

to two commuting derivations of the algebra of smooth

functions.
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These derivations continue to make sense when we re-

place the generators U and V of C∞(T2) by the genera-

tors of the algebra C∞(T2
θ), which no longer commute.

The derivations are still given by the same formulas as

in the commutative case,

δ1 = 2πiU
∂

∂U
δ2 = 2πiV

∂

∂V

so that δ1 (
∑

bnmUnV m) = 2πi
∑

nbnmUnV m, and simi-

larly for δ2.
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Finite projective modules over Aθ are classified up to

isomorphism by a pair of integers (p, q) such that p +

qθ ≥ 0. For a choice of such pair, the corresponding

module Hθ
p,q is obtained from the transversal Tp,q gi-

ven by the closed geodesic of the torus T2 specified by

(p, q), via the following construction. Elements of the

module associated to the transversal Tp,q are rectan-

gular matrices, (ξi,j) with (i, j) ∈ T × S1, and with i

and j belonging to the same leaf. The right action of

(ai,j) ∈ Aθ is by matrix multiplication.
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For instance, from the transversal x = 0 one obtains the

following right module over Aθ. The underlying linear

space is the usual Schwartz space

S(R) = {ξ : ξ(s) ∈ C, ∀s ∈ R}

of complex-valued smooth functions on R, all of whose

derivatives are of rapid decay. The right module struc-

ture is given by the action of the generators U, V :

(ξU)(s) = ξ(s+ θ) (ξV )(s) = e2πisξ(s) ∀s ∈ R .
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One finds that the Schwartz space S(R) has dimension

the real number

dimA(S) = θ .

One similarly finds values p + qθ for the more general

case. The appearance of a real-valued dimension is re-

lated to the density of transversals in the leaves, that

is, the limit of

#BR ∩ S

size of BR
,

for a ball BR of radius R in the leaf. In this sense,

the dimension θ of the Schwartz space measures the

relative densities of the two transversals S = {x = 0}
and T = {y = 0}.
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Continuous dimension

In general, the appearance of non-integral dimension

is a basic feature of von Neumann algebras of type II.

The dimension of a vector bundle is the only invariant

that remains when one looks from the measure theo-

retic point of view. The von Neumann algebra which

describes the quotient space from the measure theore-

tic point of view is the well known hyperfinite factor of

type II1. In particular the classification of finite projec-

tive modules E over R is given by a positive real number,

the Murray–von Neumann dimension

dimR(E) ∈ R+ .
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Connections and curvature

The analogs of connection and curvature of vector bundles

are straightforward to obtain : a connection is just gi-

ven by the associated covariant differentiation ▽ on the

space of smooth sections. Thus here it is given by a pair

of linear operators on the Schwartz space of rapidly de-

caying functions,

▽j : S(R) → S(R)

such that

▽j(ξb) = (▽jξ)b+ ξδj(b) ∀ξ ∈ S , b ∈ Aθ .
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Integrality

One checks that, as in the usual case, the trace of the

curvature

Ω = ▽1 ▽2 −▽2 ▽1,

is independent of the choice of the connection.

We can make the following choice for the connection :

(▽1ξ)(s) = −
2πis

θ
ξ(s) (▽2ξ)(s) = ξ′(s) .

Notice that, up to the correct powers of 2πi, the total

curvature of S is an integer. In fact, the curvature Ω

is constant, equal to 1
θ , so that the irrational number θ

disappears in the total curvature, θ × 1
θ .
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This integrality phenomenon, where the pairing of di-

mension and curvature (both of which are non–integral)

yields an integer :

dim×Ω ∼ θ ×
1

θ
= integer,

is the basis for the development of a theory of characte-

ristic classes for noncommutative spaces. In the general

case, this requires the development of more sophistica-

ted tools, since analogs of the derivations δi used in

the case of the noncommutative tori are not there in

general. The general theory is obtained through cyclic

homology.
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Noncommutative Geometry

– Measure theory= von Neumann algebras (factors types)

I, II, IIIλ and flow of weights W (M).

– K-theory.

– De Rham cohomology= cyclic cohomology HCn(A).

– Riemannian Geometry= Spectral triples

(A,H, D)
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Noncommutative Spaces

– Phase space in quantum mechanics (Heisenberg).

– Space of leaves of foliations (V, F ).

– Irreducible representations of discrete group Γ.

– Quantum groups.

Two key examples are related to the distribution of

prime numbers : the BC-system, and to the nature of

space-time.
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KMS Condition

Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Fx,y(t) = φ(xσt(y)), Fx,y(t+ iβ) = φ(σt(y)x), ∀t ∈ R.
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Tomita–Takesaki

Theorem

Let M be a von Neumann algebra and φ a faithful nor-

mal state on M , then there exists a unique

σ
φ
t ∈ Aut(M)

which fulfills the KMS condition for β = 1.
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Thesis (1971–1972)

Theorem (ac)

1 → Int(M) → Aut(M) → Out(M) → 1,

The class of σ
φ
t in Out(M) does not depend on φ.

Thus a von Neumann algebra M, has a canonical evo-

lution

R δ−→ Out(M).

Noncommutativity ⇒ Evolution
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Godbillon-Vey invariant

dω = β ∧ ω , α = dβ ∧ β .

Theorem (ac) Let (V, F ) be a 3 dimensional orien-

ted, transversally oriented compact foliated manifold,

(dimF = 2). Let M be the associated von Neumann

algebra, and W (M) be its flow of weights. Then if the

Godbillon-Vey invariant of (V, F ) is different from 0,

there exists an invariant probability measure for the flow

W (M).
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General principles

Up to Morita equivalence the algebra of the foliation

only depends upon the leaf space. The classifying si-

tuation is when the leaves are contractible.

– Cohomology along the leaves and longitudinal index

theorem.

– Transversals and geometric group for K-theory of fo-

liation.

– Cyclic cohomology of the foliation algebra and bicom-

plex with longitudinal and transverse differentials.
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Foliations and the projective Adèle class space

A. Connes, C. Consani

Interpretation by Guillemin of the Selberg trace for-

mula. V. Guillemin, Lectures on spectral theory of el-

liptic operators, Duke Math. J., Vol. 44, 3 (1977), 485-

517.

It is this paper which motivated the adèle class space

in 1996.
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Anosov foliation

One takes Γ cocompact :

M = SL2(R)/Γ

Vector fields η± and ξ on M associated to

E+ =

(
0 1
0 0

)
, E− =

(
0 0
1 0

)
, H =

1

2

(
1 0
0 −1

)
The contact structure given by the 1-form α dual to ξ

⟨ξ, α⟩ = 1 , ⟨η±, α⟩ = 0

is preserved by ξ and α ∧ dα ̸= 0.
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Polarisation

One takes the Legendre foliation of the action of η+.

It is a globally invariant polarization for ξ.

C∞(M,M
1
2)

d→ C∞(M,M
1
2 ⊗ ∧1)

where d is leafwise differentiation and M
1
2 the trans-

verse half-densities.

M is the cosphere bundle S∗X where X is the Riemann

surface H/Γ and ξ generates the geodesic flow.
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P1 and PGL2/B

P1F1(AK/K∗) ⊂ K∗\PGL2(AK)/B(AK)

Maximal torus :

K∗ = T (K) ⊂ T (AK) , T (AK)/T (K) ∼ CK

Normalizer :

N (AK) ⊃ T (K) , N (AK)/T (K) ∼ CK nW

The quotient of PGL2(AK)/B(AK) by K∗ is the leaf

space of the foliation of T (K)\PGL2(AK) by the action

of B(AK).
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Čech and sheaf cohomology for Mo-schemes

Lemma : Let X be an Mo-scheme.

1) Let U ⊂ X be an affine open set, then

Hp(U,F) = 0 , ∀p > 0 , F ∈ obj A(X)

2) Let U = (Uj) be an open cover of X such that all

finite intersections
∩
Uk are affine, then for any sheaf F

on X, one has

Hp(X,F) = Ȟp(U ,F) , ∀p ≥ 0

where the right hand side is the Čech cohomology re-

lative to the covering U.
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Projection X(M) → X

Lemma : Let X be an Mo-scheme.

1) For any monoid M there exists a canonical map

πM : X(M) → X

such that

πM(ϕ) = ϕ(pM) , ∀ϕ ∈ HomMo(Spec(M), X)

2) Let U be an open subset of X and U the associated

subfunctor of X, then

U(M) = π−1
M (U) ⊂ X(M)
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The monoid M = AK/K∗

The idèle class group CK of the Weil formula is the

group M∗ of invertible elements of the monoid

M = AK/K∗ , K∗ = GL1(K)

of adèle classes.
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Projective adèle class space

One takes the Mo-scheme P1F1 and a global field K and

M = AK/K∗. The projection :

πM : P1F1(M) = M ∪M∗ M → P1F1
one has

P1F1 = {0, u,∞} , {0} = {0} ,

{u} = P1F1 , {∞} = {∞}

and three open sets U± with U = U+ ∩ U− in P1F1

U+ = P1F1\{∞} , U− = P1F1\{0} , U = U+ ∩ U−
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Functions on M = AK/K∗

To obtain a natural space S(M) of functions on M on

lets K∗ act by fq(x) = f(qx) on the Bruhat-Schwartz

space S(AK).

0 → S(AK)0 → S(AK)
ϵ→ C⊕ C[1] → 0

where ϵ(f) = (f(0),
∫
f(x)dx) ∈ C ⊕ C[1] is K∗-invariant

and one lets

S(M) = S(AK)0/{f − fq} ⊕ C⊕ C[1]
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Sheaf Ω over P1F1

Γ(U+,Ω) = S(M)

Γ(U−,Ω) = S(M)

Γ(U+ ∩ U−,Ω) = S (CK)

and restriction maps :

(Res f)(g) =
∑
q∈K∗

f(qg) , ∀f ∈ Γ(U+,Ω)

(Resh)(g) = |g|−1 ∑
q∈K∗

h(qg−1) , ∀h ∈ Γ(U−,Ω)
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Čech Complex

The Čech Complex of the cover U = {U±} is

C0 = Γ(U+,Ω)× Γ(U−,Ω)

C1 = Γ(U+ ∩ U−,Ω)

The coboundary ∂ : C0 → C1 is

∂(f, h)(g) = Σ(f)(g)− |g|−1Σ(h)(g−1) ∈ C1.

where

Σ(f)(g) =
∑
q∈K∗

f(qg)
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Poisson Formula

Let K be a global field, α a nontrivial character of AK/K.

The lattice K ⊂ AK is its own dual.

F (f)(a) =
∫

f(x)α(ax)dx

∑
f(q) =

∑
Ff(q)

With

f(x) = h(g−1x) , Ff(a) = |g|Fh(ga)

one gets ∑
h(g−1q) = |g|

∑
F (h)(gq)

Note that F is canonical.
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Fourier–Poisson

Lemma : The kernel of ∂ : C0 → C1 is the graph of

Fourier transform

H0(P1F1,Ω) = {(f, F (f)) | f ∈ S(AK)0/{f − fq}}

⊕2τ ⊕ 2τ [1]

Let (f, h) ∈ Ker ∂. Poisson gives

Σ(Fh)(g) = |g|−1Σ(h)(g−1)

and thus

Σ(f − Fh) = 0

so that f − Fh is in the coinvariants.
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Representation of CK

ϑ+(λ)f(x) = f(λ−1x) , ∀f ∈ Γ(U+,Ω)

ϑ−(λ)f(x) = |λ|f(λx) , ∀f ∈ Γ(U−,Ω)

ϑ(λ)f(x) = f(λ−1x) , ∀f ∈ Γ(U+ ∩ U−,Ω)

defines an action of CK on the sheaf Ω

Res(ϑ−(λ)f)(g) = |g|−1 ∑
q∈K∗

(ϑ−(λ)f)(qg
−1)

= |g|−1 ∑
q∈K∗

|λ|f(λqg−1)

and

ϑ(λ)Res(f)(g) = Res(f)(λ−1g) = |λ−1g|−1 ∑
q∈K∗

f(q(λ−1g)−1)
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Action of W

The Weyl group W acts on P1F1,

w =

(
0 1
1 0

)
exchanging 0 and ∞.

The action of w on Ω is :

w#f = f ∈ Γ(U−,Ω) , ∀f ∈ Γ(U+,Ω)

w#f = f ∈ Γ(U+,Ω) , ∀f ∈ Γ(U−,Ω)

w#f(g) = |g|−1f(g−1) , ∀f ∈ Γ(U+ ∩ U−,Ω)
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Action of N = CK nW

Proposition : There is a unique action of N = CK nW

on Ω given as above on W and on CK by the twist

ϑ[−1
2].

(ϑ(λ)w#f)(g) = |λ|(w#ϑ(λ−1)f)(g)
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Spectral realization and H1(P1F1,Ω)

Theorem (CC) : The cohomology H1(P1F1,Ω) gives the

spectral realization of zeros of L-functions. The spec-

trum of the action of CK on H1(P1F1,Ω) by ϑ[−1
2] is

invariant by the symmetry χ(g) 7→ χ(g−1) of Grössen-

charakters of K.

The sheaf Ω[−1
2] is that of half-densities :

f(x)|dx|
1
2 ∼ f(x)|x|

1
2|d∗x|

1
2
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Fixed points of CK on M = AK/K∗

Let (x, u) ∈ M × CK |ux = x, with u ̸= 1. There exists

v ∈ ΣK with

x ∈ pv = {x ∈ M |xv = 0}

The isotropy group of any x ∈ pv contains

K∗
v ⊂ CK , K∗

v = {(kw) | kw = 1 ∀w ̸= v}
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Trace of the action of K∗
v on Kv

(T ξ) (x) =
∫

k(x, y) ξ(y) dy

Trdistr(T ) =
∫

k(x, x) dx .

Tξ(x) = ξ(λx) , k(x, y) = δ(λx− y)

Trdistr(T ) =
∫

k(x, x) dx =
∫

δ(λx− x) dx

=
1

|λ− 1|

∫
δ(z) dz =

1

|λ− 1|

(with z = (λ− 1)x)
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Trace of the action of CK on M = AK/K∗

The transverse space to pv ⊂ M is the local field Kv.

The isotropy group Iv = K∗
v acts as K∗

v on Kv by multi-

plication

ϑ(u)ξ(x) = ξ(u−1x)

Trdistr

(∫
h(u)ϑ(u)d∗u

)
=
∑
v

∫
K∗
v

h(u−1)

|1− u|
d∗u
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Periodic orbits on P1

Passing to projective space gives a doubling of periodic

orbits for the action of CK. One lets

– Λ regular representtaion of CK.

– τ et τ [1] trivial representation and its twist.

– τ [χ, ρ] character associated to a zero ρ ∈ Zχ of L(χ, s).

–
∫ ′
K∗
v
local contribution.

Weil :

τ + τ [1]−
∑

τ [χ, ρ] =
∑∫ ′

K∗
v
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H0 and H1 for P1

H0 = Λ+
∑∫ ′

K∗
v

+τ + τ [1]

H1 =
∑

τ [χ, ρ] = τ + τ [1]−
∑∫ ′

K∗
v

H0 −H1 = Λ+ 2
∑∫ ′

K∗
v

which accounts for the doubling of periodic orbits

TrC0 = 2

(
Λ+

∑∫ ′

K∗
v

)
, TrC1 = Λ

TrC0 −TrC1 = Λ+ 2
∑∫ ′

K∗
v
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