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1. The Eigenspace Decomposition

Let E be an elliptic curve de�ned over Q, but we will primarily think of it as being

over K, an imaginary quadratic extension of Q. Let K

�

be the local completion of

K at a place � which is inert over an integer prime l. We have p an odd prime, and

l satis�es the relations l + 1 = a

l

= 0 (mod p).

In Mihran's lectures, we had done Proposition 7.5 of Gross' paper, namely:

Proposition 1. (Gross 7.5) Cup product induces a non-degerate pairing of Z=pZ-

vector spaces (of dimension � 2)

h; i : E(K

�

)=pE(K

�

)�H

1

(G

K

�

; E)[p]! Z=pZ

We showed in Alex's lecture that E[p] splits into one-dimensional eigenspaces for

� , the complex conjugation map in Gal(K=Q) = Gal(K

�

=Q

l

), so using � to denote

eigenspaces for � , E(K

�

)[p]

�

are each one dimensional over Z=pZ (since we have

also assumed that E(K

�

) contains the full p-torsion subgroup of E). Then the �rst

order of business is to show that the pairing of Gross' Proposition 7.5 decomposes

over � -eigenspaces:

Proposition 2. (Gross 8.1) The �-eigenspaces (E(K

�

)=pE(K

�

))

�

and H

1

(G

K

�

; E)[p]

�

are each 1-dimensional, and the pairing h; i of Proposition 7.5 induces non-degenerate

pairings

h; i

�

: (E(K

�

)=pE(K

�

))

�

�H

1

(G

K

�

; E)[p]

�

! Z=pZ

Proof: In his lecture, Mihran exhibited isomorphismsE(K

�

)=pE(K

�

)

�

=

E(K

�

)[p]

and H

1

(G

K

�

; E(K

�

))[p]

�

=

Hom(�

p

(K

�

); E(K

�

)[p])

g

, where g was Gal(K

�

un

=K

�

).

Now, E(K

�

)[p]

�

�

=

(E(K

�

)=pE(K

�

))[p]

�

, as our isomorphism was one of G

Q

l

-

modules, and we conclude that the eigenspaces (E(K

�

)=pE(K

�

))[p]

�

each have di-

mension 1. But for the second isomorphism, we have since assumed that E(K

�

)[p] =

E(K

�

)[p], and further, the hypothesis that l+1 = 0 (mod p) implies that �

p

(K

�

) =

�

p

(K

�

), so the action of g is trivial, and we just get H

1

(G

K

�

; E(K

�

))[p]

�

=

Hom(�

p

(K

�

); E(K

�

)[p]). On the other hand, since p is odd, l + 1 = 0 (mod p)

implies that l � 1 6= 0 (mod p), so �

p

(Q

�

) = f1g, and �

p

(K

�

) = �

p

(K

�

)

�

. Since

�

p

(K

�

) is cyclic, Hom(�

p

(K

�

); E(K

�

)[p])

�

=

E(K

�

)[p] as groups; however, the ac-

tion of � is reversed by our observation that � acts as the involution on �

p

(K

�

), so

E(K

�

)[p]

�

�

=

H

1

(G

K

�

; E(K

�

))[p]

�

, and we conclude that the eigenspaces

H

1

(G

K

�

; E(K

�

))[p]

�

also both have dimension 1.

To show that our local pairing induces a pairing of eigenspaces, it su�ces to

check that the eigenspaces of opposite sign are orthogonal under h; i. But the Tate

pairing is compatible with the action of � , so h�(c

1

); �(c

2

)i = � hc

1

; c

2

i = hc

1

; c

2

i,

as the pairing takes values in Z=pZ, which is Galois invariant. This implies that
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hc

1

; c

2

i = h�(c

1

); �(c

2

)i = �hc

1

; c

2

i whenever c

1

; c

2

are in opposite eigenspaces, and

since p is not 2, the desired orthogonality follows.

We remark that the reason for the continual focus on � -eigenspace decomposi-

tions is now clear, as we have worked ourselves down to one dimensional spaces,

which means that to show that an element of E(K

�

)=pE(K

�

) is trivial, if it lies

in a � -eigenspace, it su�ces to produce a non-trivial element of the corresponding

eigenspace of H

1

(G

K

�

; E(K

�

))[p] which pairs to 0 with it. If our spaces weren't

one dimensional, we would need an entire basis of such elements.

2. Application of Sum of Local Invariants

`Recall' from global class �eld theory that if K is a number �eld, there is an exact

sequence 0! Br(K) !

L

�

Br(K

�

)! Q=Z! 0 where the �rst map is a product

of restriction maps, and the second map is summation, making use of the equality

Br(K

�

) = Q=Z. (For the proof of this, see [C-F, section 10 of Tate's article])

In actuality, all we will need is the fact that this sequence forms a complex; that

is, that if we take an element of Br(K), map it into Br(K

�

) for each each �, and

take the sum, we always get 0.

Now suppose that h; i

K

is a global pairing induced by cup product, and mapping

into Br(K). Since cup product is compatible with restriction of cycles, for any s; c

the sum over all places � of hs; ci

�

, where h; i

�

denotes restricting the cocycles to

K

�

and then taking the local cup product, must be 0.

For our case, h; i

K

will be the pairing of H

1

(G

K

; E[p]) with itself, which we will

be able to consider as an element of Br(K) thanks to the Weil pairing.

We apply this to deduce:

Proposition 3. (Gross 8.2) Assume that d 2 H

1

(G

K

; E(K))[p]

�

is locally trivial

at all places � 6= � of K, but d

�

6= 0 in H

1

(G

K

�

; E(K

�

))[p]

�

. Then if a class

s 2 H

1

(G

K

; E[p])

�

lies in Sel

p

(E=K), we have s

�

= 0 in H

1

(G

K

�

; E[p])

�

.

Proof: The Kummer sequence gives us

E(K

�

)=pE(K

�

)! H

1

(G

K

�

; E[p])! H

1

(G

K

�

; E(K

�

))

but for s to be in Sel

p

means the second map is 0, so s

�

2 (E(K

�

)=pE(K

�

))

�

.

Therefore, it will be enough to show that hs

�

; d

�

i = 0. Now, choose a lift of d

to some c 2 H

1

(G

K

; E[p]) (which will be well-de�ned modulo E(K)=pE(K)), and

observe that at every place �, hs

�

; c

�

i = hs

�

; d

�

i, as we can choose a (Z=pZ vector

space) splitting of the local exact sequence

0! E(K

�

)=pE(K

�

)! H

1

(G

K

�

; E[p])! H

1

(G

K

�

; E)[p]! 0

to write c

�

= d

�

+ s

0

for some s

0

2 E(K

�

)=pE(K

�

), and then the observation

from Mihran's lectures that E(K

�

)=pE(K

�

) is isotropic for the pairing h; i leads

to the desired conclusion. Furthermore (and this a subtlety which may or may

not have any actual content), hs

�

; c

�

i is in fact the Galois module theoretic local

restriction map at � of hs; ci

K

, because H

1

(G

K

�

; E(K

�

)[p]) = H

1

(G

K

�

; E(K)[p])

(the latter being the group in which the Galois module theoretic restriction actual

lies). Putting these together, our result on the sum of local invariants implies

P

�

hs

�

; d

�

i = 0, but d

�

= 0 for all � 6= �, so this gives hs

�

; d

�

i = 0 as well. Since

d

�

is non-trivial by hypothesis, applying Gross' Proposition 8.1 implies that s

�

is

trivial, as desired.
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Lastly, we remark that this is why it was so crucial to be able to calculate at

every place whether or not the d(n) were locally trivial; throwing out, say, the

places of bad reduction, would have made it impossible to apply the sum of local

invariants theorem, and would ultimately have yielded no information at all.
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