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1. A Brief Lemma

We begin with a basic lemma whose proof is short but clever:

Lemma 1. Let G be a �nite group of order n, and A a G-module. Then multipli-

cation by n is the 0 map on H

k

(G;A) for all k > 0.

Proof: The key is to make use of the trace map on an injection resolution of A

by G-modules. Denote by Tr

G

the trace map, de�ned on any G-module, sending

an element to the sum of its G-conjugates. Fix an injective resolution

0! A! I

0

! I

1

! I

2

! : : :

Then H

�

(G;A) is the cohomology of the complex

0! I

G

0

! I

G

1

! I

G

2

! : : :

For k > 0, pick any element x 2 I

G

k

mapping to 0 in I

G

k+1

; by the exactness of the

injective resolution, there is a y 2 I

k�1

which maps to x. Then Tr

G

y 2 I

G

k�1

, and

maps to Tr

G

x. But x is �xed by G, so Tr

G

x = nx. Thus, [x] = 0 in H

k

(G;A), as

desired.

This leads immediately to the following corollary:

Corollary 1. Let G be a �nite group of order n, relatively prime to the order of a

�nite G-module A. Then H

k

(G;A) = 0 for all k > 0.

Proof: Since the order of A is prime to n, multiplication by

1

n

is a well-de�ned

map (of G-modules) from A to itself, which means it is also a well-de�ned map on

cocycles. Thus, any cocycle is n times another cocycle, and from the lemma the

result follows immediately.

2. A Pairing

In this section we will assume that p is odd, and Gal(Q(E[p])=Q )

�

=

GL

2

(Z=pZ).

Write L = K(E[p]). We have assumed that D (the discriminant of K) is prime to

N and to p, so the rami�cation of Q(E[p]) over Q is disjoint from the rami�cation

of K over Q, and their intersection is therefore just Q. Hence, they are linearly

disjoint extensions, so Gal(L=K)

�

=

Gal(Q(E[p])=Q ). We write G for Gal(L=K).

We wish to show:

Proposition 1. (Gross 9.1)The restriction map gives an isomorphism:

H

1

(G

K

; E[p]) ~!H

1

(G

L

; E[p])

G

= Hom

G

(G

L

; E[p])

1
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Proof: Since G

L

is normal in G

K

(with quotient G), by the Hochschild-Serre

spectral sequence, the kernel of the restriction map is H

1

(G; E[p]) and the coker-

nel maps into H

2

(G; E[p]), so we wish to show both of these are trivial. In fact,

H

k

(G; E[p]) = 0 for all k, which we shall show via another Hochshild-Serre spec-

tral sequence, using the normal subgroup Z � G given by Z = Z=pZ

�

; that is,

the subgroup which corresponds to the subgroup of Aut(E[p]) that simply multi-

plies torsion points by integers which are non-zero mod p (equivalently, the scalar

matrices of GL

2

(Z=pZ)). We have

H

m

(G=Z;H

n

(Z;E[p]))) H

m+n

(G; E[p])

Thus, to complete the proof of the proposition, it su�ces to note H

n

(Z;E[p]) = 0

for all n. H

0

(Z;E[p]) = 0 because p > 2, while H

n

(Z;E[p]) = 0 for all n > 0 by

the corollary to our lemma above, as Z has order p� 1 and E[p] has order p

2

.

The isomorphism of this proposition gives us a pairing

[; ] : H

1

(G

K

; E[p])�G

L

! E[p]

which is nondegenerate on the left in the sense that if [s; �] = 0 for all � 2 G

L

, then

s = 0. It also satis�es [�(s); �(�)] = [s; �(�)] = �([s; �]) for all � 2 G.

Suppose S is a �nite subgroup of H

1

(G

K

; E[p]). Let G

S

be the (normal) sub-

group of G

L

of � such that [s; �] = 0 for all s 2 S, and write L

S

for the �xed �eld

of G

S

, a �nite Galois extension of L. Then:

Proposition 2. (Gross 9.3)The induced pairing

[; ] : S �Gal(L

S

=L)! E[p]

is nondegenerate, and gives Galois module isomorphisms Gal(L

S

=L)

�

=

Hom(S;E[p]),

S

�

=

Hom

G

(Gal(L

S

=L); E[p]).

Proof: Non-degeneracy of the pairing is immediate: it is nondegenerate on the

left side because it is the restriction of a left nondegenerate pairing, and it is non-

degenerate on the right because we have modded out by the � which pair to 0

with S. This means the pairing induces injections Gal(L

S

=L) ,! Hom(S;E[p])

and S ,! Hom

G

(Gal(L

S

=L); E[p]). Now, S is a Z=pZ vector space, say of dimen-

sion r. Then Hom(S;E[p])

�

=

E[p]

r

which, since E[p] is a simple Galois module,

is semisimple. Thus, Gal(L

S

=L)

�

=

E[p]

s

for some s � r. But since G is the

full linear group acting on E[p], the only endomorphisms that commute with it

are the scalar maps, and Hom

G

(E[p]; E[p]) = Z=pZ, so Hom

G

(Gal(L

S

=L); E[p]) =

Hom

G

(E[p]

s

; E[p]) = Z=pZ

s

. But we assumed that S

�

=

Z=pZ

r

, and S injects into

Hom

G

(Gal(L

S

=L); E[p]), so r � s, and in fact r = s and both injections induce

isomorphisms.

3. The Selmer Group

We now apply the results of the previous section to S = Sel

p

(E=K). Following

Gross' notation, we write M = L

S

, H = Gal(M=L) = Gal(L

S

=L). We also assume

that p does not divide the Heeger point y

K

in E(K), so that its image �y

K

in

Sel

p

(E=K) is non-zero. Since L contains E[p], L(

1

p

y

K

) is a Galois extension of

L. Moreover, it is a sub�eld of M , since an element � of G

M

is, by de�nition,

an element of G

L

which pairs to 0 with anything in Sel

p

(E=K), which is to say

that any cocycle f 2 Sel

p

(E=K) � H

1

(G

K

; E[p]) sends � to 0. In particular, �y

K

de�nes a cocycle by � 7! �(

1

p

y

K

) �

1

p

y

K

for some �xed choice of

1

p

y

K

, and since
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this maps � to 0, � �xes L(

1

p

y

K

). Thus, L(

1

p

y

K

) is indeed a sub�eld of M , and we

can write I for the subgroup of H �xing it. Note that the Galois action on

1

p

y

K

sends it precisely to the other possible choices of

1

p

y

K

, or equivalently, to

1

p

y

K

plus

elements of E[p], so H=I

�

=

E[p]. Lastly, let � be a choice of complex conjugation

map in Gal(M=Q), and write H

+

and I

+

for the subgroups of H and I �xed by

conjugation by � .

Lemma 2. We can express H

+

= f(�h)

2

: h 2 Hg; I

+

= f(�i)

2

: i 2 Ig, and

H

+

=I

+

�

=

Z=pZ

Proof: Note that by the previous proposition,H

�

=

Hom(Sel

p

(E=K); E[p]), and is

in particular a Z=pZvector space. Then I claim that H

+

= H

�+1

= fh

�

h : h 2 Hg:

certainly H

+

, which is the kernel of � � 1, contains H

�+1

, as �

2

� 1 = 0. On

the other hand if h 2 H

+

, h

�+1

= h

2

, and since p is odd and H is a Z=pZ

vector space, squaring (i.e., multiplication by 2) is an automorphism (of Galois

modules), so h = (h

1=2

)

�+1

, and is in H

�+1

, as desired. But h

�

= �h�

�1

= �h� ,

so h

�

h = (�h)

2

. The same argument applies to I

+

. Lastly, this implies that

H

+

=I

+

= (H=I)

+

= E[p]

+

�

=

Z=pZ.

Proposition 3. (Gross 9.5) Let s 2 Sel

p

(E=K)

�

. The following are equivalent:

i) [s; �] = 0 for all � 2 H

ii) [s; �] = 0 for all � 2 H

+

iii) [s; �] = 0 for all � 2 H

+

nI

+

iv) s = 0

Proof: The implications iv) ) i) ) ii) ) iii) are trivial. Moreover, by the

nondegeneracy of our pairing, i) ) iv). Thus, it su�ces to show that iii) ) i).

Now, s de�nes a group homomorphism from H

+

to E[p], and by the lemma, I

+

(

H

+

, so s vanishing on H

+

nI

+

means it must vanish on all of H

+

. But we chose

s 2 Sel

p

(E=K)

�

, so the homomorphism it induces H ! E[p] maps H

+

! E[p]

�

,

and H

�

! E[p]

�

. Since s vanishes on H

+

, s(H) � E[p]

�

. But s(H) is a G-

submodule of E[p], which is simple, so if it is strictly contained inside it, it must

be trivial, and s(H) = 0, as desired.

The last step is to relate the vanishing of the pairing [; ] on very particular

Galois automorphisms to local vanishing of s, which will, when put together with

the previous proposition, allow us to relate local vanishing of s at enough places to

global vanishing. For this part, let � be a prime of K not dividing Np, then it is

unrami�ed inM=K. Suppose further that � splits in l=K, and write �

M

for a prime

factor of � in M . The Frobenius element Fr

M=K

(�

M

) in Gal(M=K) is actually in

H , due to the hypothesis that � splits in L. Moreover, the G-orbit of Fr

M=K

(�

M

),

which we write Frob(�), depends, as the notation suggests, only on �.

Proposition 4. (Gross 9.6) For s 2 Sel

p

(E=K), the following are equivalent:

i) [s;Fr

M=K

(�

M

)] = 0

ii) [s; �] = 0 for all � 2 Frob(�)

iii) s

�

= 0 in H

1

(G

K

�

; E[p])

Proof: The equivalence of i) and ii) follows from the property of [; ] that [s; �(�)] =

�([s; �]), as all the elements of Frob(�) are conjugate to Fr

M=K

(�

M

). Since the

Shafarevich-Tate group of E is locally trivial by de�nition, we have an isomor-

phism between E(K

�

)=pE(K

�

) and the local restriction of the p-Selmer group of
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E. Thus, we can write s

�

as � 7! �(

1

p

P

�

)�

1

p

P

�

for some P

�

in E(K

�

) and a �xed

choice of

1

p

P

�

. In particular, [s;Fr

M=K

(�

M

)] = Fr

M=K

(�

M

)(

1

p

P

�

) �

1

p

P

�

, which is

0 if and only if

1

p

P

�

is in E(K

�

), by the injectivity on p-torsion of the reduction

map. And this is true if and only if P

�

2 pE(K

�

), if and only if s

�

= 0.


