CONCRETE SELMER GROUP MANIPULATIONS

BRIAN OSSERMAN

1. A Brief Lemma

We begin with a basic lemma whose proof is short but clever:

Lemma 1. Let G be a finite group of order n, and A a G-module. Then multiplication by n is the 0 map on $H^k(G, A)$ for all k > 0.

Proof: The key is to make use of the trace map on an injection resolution of A by G-modules. Denote by Tr_G the trace map, defined on any G-module, sending an element to the sum of its G-conjugates. Fix an injective resolution

$$0 \to A \to I_0 \to I_1 \to I_2 \to \dots$$

Then $H^*(G, A)$ is the cohomology of the complex

$$0 \to I_0^G \to I_1^G \to I_2^G \to \dots$$

For k > 0, pick any element $x \in I_k^G$ mapping to 0 in I_{k+1}^G ; by the exactness of the injective resolution, there is a $y \in I_{k-1}$ which maps to x. Then $\operatorname{Tr}_G y \in I_{k-1}^G$, and maps to $\operatorname{Tr}_G x$. But x is fixed by G, so $\operatorname{Tr}_G x = nx$. Thus, [x] = 0 in $H^k(G, A)$, as desired.

This leads immediately to the following corollary:

Corollary 1. Let G be a finite group of order n, relatively prime to the order of a finite G-module A. Then $H^k(G, A) = 0$ for all k > 0.

Proof: Since the order of A is prime to n, multiplication by $\frac{1}{n}$ is a well-defined map (of G-modules) from A to itself, which means it is also a well-defined map on cocycles. Thus, any cocycle is n times another cocycle, and from the lemma the result follows immediately.

2. A PAIRING

In this section we will assume that p is odd, and $\operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) \cong GL_2(\mathbb{Z}/p\mathbb{Z})$. Write L = K(E[p]). We have assumed that D (the discriminant of K) is prime to N and to p, so the ramification of $\mathbb{Q}(E[p])$ over \mathbb{Q} is disjoint from the ramification of K over \mathbb{Q} , and their intersection is therefore just \mathbb{Q} . Hence, they are linearly disjoint extensions, so $\operatorname{Gal}(L/K) \cong \operatorname{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$. We write \mathcal{G} for $\operatorname{Gal}(L/K)$. We wish to show:

Proposition 1. (Gross 9.1) The restriction map gives an isomorphism:

$$H^1(G_K, E[p]) \tilde{\to} H^1(G_L, E[p])^{\mathcal{G}} = \operatorname{Hom}_{\mathcal{G}}(G_L, E[p])$$

BRIAN OSSERMAN

Proof: Since G_L is normal in G_K (with quotient \mathcal{G}), by the Hochschild-Serre spectral sequence, the kernel of the restriction map is $H^1(\mathcal{G}, E[p])$ and the cokernel maps into $H^2(\mathcal{G}, E[p])$, so we wish to show both of these are trivial. In fact, $H^k(\mathcal{G}, E[p]) = 0$ for all k, which we shall show via another Hochshild-Serre spectral sequence, using the normal subgroup $Z \subset \mathcal{G}$ given by $Z = \mathbb{Z}/p\mathbb{Z}^*$; that is, the subgroup which corresponds to the subgroup of $\operatorname{Aut}(E[p])$ that simply multiplies torsion points by integers which are non-zero mod p (equivalently, the scalar matrices of $GL_2(\mathbb{Z}/p\mathbb{Z})$). We have

$$H^{m}(\mathcal{G}/Z, H^{n}(Z, E[p])) \Rightarrow H^{m+n}(\mathcal{G}, E[p])$$

Thus, to complete the proof of the proposition, it suffices to note $H^n(Z, E[p]) = 0$ for all n. $H^0(Z, E[p]) = 0$ because p > 2, while $H^n(Z, E[p]) = 0$ for all n > 0 by the corollary to our lemma above, as Z has order p - 1 and E[p] has order p^2 .

The isomorphism of this proposition gives us a pairing

$$[,]: H^1(G_K, E[p]) \times G_L \to E[p]$$

which is nondegenerate on the left in the sense that if $[s, \rho] = 0$ for all $\rho \in G_L$, then s = 0. It also satisfies $[\sigma(s), \sigma(\rho)] = [s, \sigma(\rho)] = \sigma([s, \rho])$ for all $\sigma \in \mathcal{G}$.

Suppose S is a finite subgroup of $H^1(G_K, E[p])$. Let G_S be the (normal) subgroup of G_L of ρ such that $[s, \rho] = 0$ for all $s \in S$, and write L_S for the fixed field of G_S , a finite Galois extension of L. Then:

Proposition 2. (Gross 9.3) The induced pairing

$$[,]: S \times \operatorname{Gal}(L_S/L) \to E[p]$$

is nondegenerate, and gives Galois module isomorphisms $\operatorname{Gal}(L_S/L) \cong \operatorname{Hom}(S, E[p]), S \cong \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E[p]).$

Proof: Non-degeneracy of the pairing is immediate: it is nondegenerate on the left side because it is the restriction of a left nondegenerate pairing, and it is nondegenerate on the right because we have modded out by the ρ which pair to 0 with S. This means the pairing induces injections $\operatorname{Gal}(L_S/L) \hookrightarrow \operatorname{Hom}(S, E[p])$ and $S \hookrightarrow \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E[p])$. Now, S is a $\mathbb{Z}/p\mathbb{Z}$ vector space, say of dimension r. Then $\operatorname{Hom}(S, E[p]) \cong E[p]^r$ which, since E[p] is a simple Galois module, is semisimple. Thus, $\operatorname{Gal}(L_S/L) \cong E[p]^s$ for some $s \leq r$. But since \mathcal{G} is the full linear group acting on E[p], the only endomorphisms that commute with it are the scalar maps, and $\operatorname{Hom}_{\mathcal{G}}(E[p], E[p]) = \mathbb{Z}/p\mathbb{Z}$, so $\operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E[p]) = \operatorname{Hom}_{\mathcal{G}}(\operatorname{Gal}(L_S/L), E[p])$, so $r \leq s$, and in fact r = s and both injections induce isomorphisms.

3. The Selmer Group

We now apply the results of the previous section to $S = \operatorname{Sel}_p(E/K)$. Following Gross' notation, we write $M = L_S$, $H = \operatorname{Gal}(M/L) = \operatorname{Gal}(L_S/L)$. We also assume that p does not divide the Heeger point y_K in E(K), so that its image δy_K in $\operatorname{Sel}_p(E/K)$ is non-zero. Since L contains E[p], $L(\frac{1}{p}y_K)$ is a Galois extension of L. Moreover, it is a subfield of M, since an element σ of G_M is, by definition, an element of G_L which pairs to 0 with anything in $\operatorname{Sel}_p(E/K)$, which is to say that any cocycle $f \in \operatorname{Sel}_p(E/K) \subset H^1(G_K, E[p])$ sends σ to 0. In particular, δy_K defines a cocycle by $\sigma \mapsto \sigma(\frac{1}{p}y_K) - \frac{1}{p}y_K$ for some fixed choice of $\frac{1}{p}y_K$, and since

2

this maps σ to 0, σ fixes $L(\frac{1}{p}y_K)$. Thus, $L(\frac{1}{p}y_K)$ is indeed a subfield of M, and we can write I for the subgroup of H fixing it. Note that the Galois action on $\frac{1}{p}y_K$ sends it precisely to the other possible choices of $\frac{1}{p}y_K$, or equivalently, to $\frac{1}{p}y_K$ plus elements of E[p], so $H/I \cong E[p]$. Lastly, let τ be a choice of complex conjugation map in $\operatorname{Gal}(M/\mathbb{Q})$, and write H^+ and I^+ for the subgroups of H and I fixed by conjugation by τ .

Lemma 2. We can express $H^+ = \{(\tau h)^2 : h \in H\}, I^+ = \{(\tau i)^2 : i \in I\}$, and $H^+/I^+ \cong \mathbb{Z}/p\mathbb{Z}$

Proof: Note that by the previous proposition, $H \cong \operatorname{Hom}(\operatorname{Sel}_p(E/K), E[p])$, and is in particular a $\mathbb{Z}/p\mathbb{Z}$ vector space. Then I claim that $H^+ = H^{\tau+1} = \{h^{\tau}h : h \in H\}$: certainly H^+ , which is the kernel of $\tau - 1$, contains $H^{\tau+1}$, as $\tau^2 - 1 = 0$. On the other hand if $h \in H^+$, $h^{\tau+1} = h^2$, and since p is odd and H is a $\mathbb{Z}/p\mathbb{Z}$ vector space, squaring (i.e., multiplication by 2) is an automorphism (of Galois modules), so $h = (h^{1/2})^{\tau+1}$, and is in $H^{\tau+1}$, as desired. But $h^{\tau} = \tau h \tau^{-1} = \tau h \tau$, so $h^{\tau}h = (\tau h)^2$. The same argument applies to I^+ . Lastly, this implies that $H^+/I^+ = (H/I)^+ = E[p]^+ \cong \mathbb{Z}/p\mathbb{Z}$.

Proposition 3. (Gross 9.5) Let $s \in \operatorname{Sel}_p(E/K)^{\pm}$. The following are equivalent:

- i) $[s, \rho] = 0$ for all $\rho \in H$
- ii) $[s, \rho] = 0$ for all $\rho \in H^+$
- iii) $[s, \rho] = 0$ for all $\rho \in H^+ \setminus I^+$
- iv) s = 0

Proof: The implications $iv \Rightarrow i \Rightarrow ii \Rightarrow iii$ are trivial. Moreover, by the nondegeneracy of our pairing, $i \Rightarrow iv$. Thus, it suffices to show that $iii \Rightarrow i$. Now, s defines a group homomorphism from H^+ to E[p], and by the lemma, $I^+ \subsetneq H^+$, so s vanishing on $H^+ \setminus I^+$ means it must vanish on all of H^+ . But we chose $s \in \operatorname{Sel}_p(E/K)^{\pm}$, so the homomorphism it induces $H \to E[p]$ maps $H^+ \to E[p]^{\pm}$, and $H^- \to E[p]^{\mp}$. Since s vanishes on H^+ , $s(H) \subset E[p]^{\mp}$. But s(H) is a \mathcal{G} -submodule of E[p], which is simple, so if it is strictly contained inside it, it must be trivial, and s(H) = 0, as desired.

The last step is to relate the vanishing of the pairing [,] on very particular Galois automorphisms to local vanishing of s, which will, when put together with the previous proposition, allow us to relate local vanishing of s at enough places to global vanishing. For this part, let λ be a prime of K not dividing Np, then it is unramified in M/K. Suppose further that λ splits in l/K, and write λ_M for a prime factor of λ in M. The Frobenius element $\operatorname{Fr}_{M/K}(\lambda_M)$ in $\operatorname{Gal}(M/K)$ is actually in H, due to the hypothesis that λ splits in L. Moreover, the \mathcal{G} -orbit of $\operatorname{Fr}_{M/K}(\lambda_M)$, which we write $\operatorname{Frob}(\lambda)$, depends, as the notation suggests, only on λ .

Proposition 4. (Gross 9.6) For $s \in \text{Sel}_p(E/K)$, the following are equivalent:

- i) $[s, \operatorname{Fr}_{M/K}(\lambda_M)] = 0$
- ii) $[s, \rho] = 0$ for all $\rho \in \operatorname{Frob}(\lambda)$
- iii) $s_{\lambda} = 0$ in $H^1(G_{K_{\lambda}}, E[p])$

Proof: The equivalence of i) and ii) follows from the property of [,] that $[s, \sigma(\rho)] = \sigma([s, \rho])$, as all the elements of $\operatorname{Frob}(\lambda)$ are conjugate to $\operatorname{Fr}_{M/K}(\lambda_M)$. Since the Shafarevich-Tate group of E is locally trivial by definition, we have an isomorphism between $E(K_{\lambda})/pE(K_{\lambda})$ and the local restriction of the p-Selmer group of

E. Thus, we can write s_{λ} as $\sigma \mapsto \sigma(\frac{1}{p}P_{\lambda}) - \frac{1}{p}P_{\lambda}$ for some P_{λ} in $E(K_{\lambda})$ and a fixed choice of $\frac{1}{p}P_{\lambda}$. In particular, $[s, \operatorname{Fr}_{M/K}(\lambda_M)] = \operatorname{Fr}_{M/K}(\lambda_M)(\frac{1}{p}P_{\lambda}) - \frac{1}{p}P_{\lambda}$, which is 0 if and only if $\frac{1}{p}P_{\lambda}$ is in $E(K_{\lambda})$, by the injectivity on *p*-torsion of the reduction map. And this is true if and only if $P_{\lambda} \in pE(K_{\lambda})$, if and only if $s_{\lambda} = 0$.