CONCRETE SELMER GROUP MANIPULATIONS

BRIAN OSSERMAN

1. A BRIEF LEMMA

We begin with a basic lemma whose proof is short but clever:

Lemma 1. Let G be a finite group of order n, and A a G-module. Then multipli-
cation by n is the 0 map on H*(G,A) for all k > 0.

Proof: The key is to make use of the trace map on an injection resolution of A
by G-modules. Denote by Trg the trace map, defined on any G-module, sending
an element to the sum of its G-conjugates. Fix an injective resolution

0>A—-Ily—-1 -1, — ...
Then H*(G, A) is the cohomology of the complex
0= I§ = I¢ =I5 — ...

For k > 0, pick any element z € If' mapping to 0 in I, |; by the exactness of the
injective resolution, there is a y € I;—; which maps to . Then Trgy € I,?_l, and
maps to Trg z. But x is fixed by G, so Trg = nz. Thus, [z] = 0 in H¥(G, A), as
desired.

This leads immediately to the following corollary:

Corollary 1. Let G be a finite group of order n, relatively prime to the order of a
finite G-module A. Then H*(G,A) =0 for all k > 0.

Proof: Since the order of A is prime to n, multiplication by % is a well-defined
map (of G-modules) from A to itself, which means it is also a well-defined map on
cocycles. Thus, any cocycle is n times another cocycle, and from the lemma the
result follows immediately.

2. A PAIRING

In this section we will assume that p is odd, and Gal(Q(E[p])/Q) = GL3(Z/pZ).
Write L = K(E[p]). We have assumed that D (the discriminant of K) is prime to
N and to p, so the ramification of Q(E[p]) over Q is disjoint from the ramification
of K over Q, and their intersection is therefore just Q. Hence, they are linearly
disjoint extensions, so Gal(L/K) = Gal(Q(E[p])/Q). We write G for Gal(L/K).
We wish to show:

Proposition 1. (Gross 9.1) The restriction map gives an isomorphism:

H'(Gk, Blp))»H"(GL, Elp))? = Homg (G, Elp])
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Proof: Since G, is normal in Gk (with quotient G), by the Hochschild-Serre
spectral sequence, the kernel of the restriction map is H*(G, E[p]) and the coker-
nel maps into H?(G, E[p]), so we wish to show both of these are trivial. In fact,
H*(G, E[p]) = 0 for all k, which we shall show via another Hochshild-Serre spec-
tral sequence, using the normal subgroup Z C G given by Z = Z/pZ*; that is,
the subgroup which corresponds to the subgroup of Aut(E[p]) that simply multi-
plies torsion points by integers which are non-zero mod p (equivalently, the scalar
matrices of GL2(Z /pZ)). We have

H"™(G/Z,H"(Z, E[p])) = H™ (G, E[p])

Thus, to complete the proof of the proposition, it suffices to note H*(Z, E[p]) =0

for all n. H°(Z, E[p]) = 0 because p > 2, while H"(Z, E[p]) = 0 for all n > 0 by

the corollary to our lemma above, as Z has order p — 1 and E[p] has order p?.
The isomorphism of this proposition gives us a pairing

[,]: HY(Gx, E[p)) x G — E[p)

which is nondegenerate on the left in the sense that if [s, p] = 0 for all p € G, then
s = 0. It also satisfies [o(s),0(p)] = [s,0(p)] = o([s, p]) for all o € G.

Suppose S is a finite subgroup of H!(Gg, E[p]). Let G be the (normal) sub-
group of G, of p such that [s,p] = 0 for all s € S, and write Lg for the fixed field
of Gg, a finite Galois extension of L. Then:

Proposition 2. (Gross 9.3) The induced pairing
[,]: S x Gal(Ls/L) — E[p]

is nondegenerate, and gives Galois module isomorphisms Gal(Ls/L) = Hom(S, E[p]),
S = Homg(Gal(Ls/L), E[p])-

Proof: Non-degeneracy of the pairing is immediate: it is nondegenerate on the
left side because it is the restriction of a left nondegenerate pairing, and it is non-
degenerate on the right because we have modded out by the p which pair to 0
with S. This means the pairing induces injections Gal(Ls/L) — Hom(S, E[p])
and S — Homg(Gal(Ls/L), E[p]). Now, S is a Z /pZ vector space, say of dimen-
sion 7. Then Hom(S, E[p]) = E[p]" which, since E[p] is a simple Galois module,
is semisimple. Thus, Gal(Ls/L) = E[p|® for some s < r. But since G is the
full linear group acting on E[p], the only endomorphisms that commute with it
are the scalar maps, and Homg (E[p], E[p]) = Z [pZ, so Homg(Gal(Ls/L), E[p]) =
Homg(E[p)®, E[p]) = Z/pZ®. But we assumed that S = Z /pZ", and S injects into
Homg(Gal(Ls/L), E[p]), so r < s, and in fact r = s and both injections induce
isomorphisms.

3. THE SELMER GROUP

We now apply the results of the previous section to S = Sel,(E/K). Following
Gross’ notation, we write M = Lg, H = Gal(M /L) = Gal(Lg/L). We also assume
that p does not divide the Heeger point yx in E(K), so that its image dyx in
Sel,(E/K) is non-zero. Since L contains E[p], L(%yK) is a Galois extension of
L. Moreover, it is a subfield of M, since an element o of G is, by definition,
an element of G which pairs to 0 with anything in Sel,(E/K), which is to say
that any cocycle f € Sel,(E/K) C H'(Gk, E[p]) sends o to 0. In particular, dyx
defines a cocycle by o — J(%yK) — %yK for some fixed choice of %yK, and since



CONCRETE SELMER GROUP MANIPULATIONS 3

this maps o to 0, o fixes L(%yK). Thus, L(%yK) is indeed a subfield of M, and we
can write I for the subgroup of H fixing it. Note that the Galois action on %yK
sends it precisely to the other possible choices of %yK, or equivalently, to %yK plus
elements of E[p|, so H/I = E[p|. Lastly, let T be a choice of complex conjugation
map in Gal(M/Q), and write H™ and I for the subgroups of H and I fixed by
conjugation by 7.

Lemma 2. We can express HT = {(th)? : h € H},IT = {(1i)® : i € I}, and
H/I* =~ 7./pL

Proof: Note that by the previous proposition, H = Hom(Sel, (E/K), E[p]), and is
in particular a Z /pZ vector space. Then I claim that H* = H™™' = {h"h : h € H}:
certainly H*, which is the kernel of 7 — 1, contains H™*!, as 7> —1 = 0. On
the other hand if h € H*, k™' = h2 and since p is odd and H is a Z/pZ
vector space, squaring (i.e., multiplication by 2) is an automorphism (of Galois
modules), so h = (h'/?)7+1 and is in H™*!, as desired. But h™ = 7hr ! = th7,
so h"h = (7h)?. The same argument applies to IT. Lastly, this implies that
H* /It = (H/T)* = E[p|* = 7/pL.
Proposition 3. (Gross 9.5) Let s € Sel,(E/K)*. The following are equivalent:
i) [s,p] =0 forallpe H
ii) [s,p] =0 for allpe H*
iii) [s,p] =0 for all pe HT\I"
iv) s=0

Proof: The implications iv) = i) = 4i) = 4ii) are trivial. Moreover, by the
nondegeneracy of our pairing, i) = iv). Thus, it suffices to show that iii) = 7).
Now, s defines a group homomorphism from H* to E[p|, and by the lemma, I C
HT™, so s vanishing on HT\I™ means it must vanish on all of H*. But we chose
s € Sel,(E/K)*, so the homomorphism it induces H — E[p] maps H* — E[p]*,
and H~ — E[p]T. Since s vanishes on H', s(H) C E[p]t. But s(H) is a G-
submodule of E[p|, which is simple, so if it is strictly contained inside it, it must
be trivial, and s(H) = 0, as desired.

The last step is to relate the vanishing of the pairing [,] on very particular
Galois automorphisms to local vanishing of s, which will, when put together with
the previous proposition, allow us to relate local vanishing of s at enough places to
global vanishing. For this part, let A be a prime of K not dividing Np, then it is
unramified in M/K. Suppose further that A splits in [/ K, and write Ajs for a prime
factor of A in M. The Frobenius element Frys g (Ay) in Gal(M/K) is actually in
H, due to the hypothesis that A splits in L. Moreover, the G-orbit of Frys/x (Anr),
which we write Frob(\), depends, as the notation suggests, only on .

Proposition 4. (Gross 9.6) For s € Sel,(E/K), the following are equivalent:
i) [s,Frar/x(Am)] =0
ii) [s,p] =0 for all p € Frob(\)
111) S\ = 0 n Hl(GK/\,E[p])

Proof: The equivalence of i) and i7) follows from the property of [,] that [s, o(p)] =
o([s,p]), as all the elements of Frob(A) are conjugate to Frps x(Aar). Since the
Shafarevich-Tate group of E is locally trivial by definition, we have an isomor-
phism between E(K))/pE(K)) and the local restriction of the p-Selmer group of



4 BRIAN OSSERMAN

E. Thus, we can write s, as o U(%P)\) — %PA for some Py in E(K ) and a fixed
choice of %P,\. In particular, [s, Fry; g (Aar)] = FrM/K(/\M)(%P,\) — %P,\, which is
0 if and only if %PA is in E(K)), by the injectivity on p-torsion of the reduction
map. And this is true if and only if P\ € pE(K)), if and only if sy = 0.



