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Class �eld theory classi�es the abelian extensions of a number �eld in terms of certain quotients of the

group of ideals of the ring of integers. Over Q, the situation becomes much more explicit: by Kronecker-

Weber, the maximal abelian extension is generated by roots of unity. In these talks, we will see how over

imaginary quadratic �elds, elliptic curves with complex multiplication permit a similar description of abelian

extension.

References: for class �eld theory, Lang's Algebraic Number Theory exists but is unpleasant; Cassels and

Fr�ohlich, Algebraic Number Theory is dense but more readable; and Milne's notes (at www.jmilne.org)

are better yet. For elliptic curves, Silverman's Arithmetic of Elliptic Curves and Advanced Topics in the

Arithmetic of Elliptic Curves are the standard references (complex multiplication is covered in Chapter II

of AEC2).

1. Review of Class Field Theory

In this talk, by a conductor for a �eld K we shall mean a pair (m; S), where m is an ideal in o

K

and

S is a set of real embeddings of K. Let I

K;m

denote the group of ideals in o

K

coprime to m, and P

K;m;S

the subgroup generated by ideals which are principal, and admit a generator congruent to 1 modulo m and

positive in all embeddings in S. (Warning: these collections are monoids, not groups. When I refer to such

a thing as a \group", I really mean the quotient group of the monoid. Equivalently, work with fractional

ideals instead of ideals and then the monoid itself is already a group.)

For L=K abelian and p a prime of K which does not ramify in L, there is an element � 2 Gal(L=K)

such that x

�

� x

Np

(mod q) for all primes q over p. We call � the Frobenius at p. In the obvious way

(multiplicativity), the assignment of p to � extends to a map from the group of ideals not divisible by any

rami�ed primes to Gal(L=K). This map is called the Artin map.

Theorem 1 (Artin reciprocity law). If L=K is abelian, there exists a conductor (m; S) such that P

K;m;S

is

in the kernel of the Artin map.

The \minimal" such pair is called the conductor of L=K. One can also describe the kernel of the Artin

map more precisely: it is generated by P

K;m;S

with (m; S) equal to the conductor, plus norms of ideals of L.

Theorem 2 (Existence theorem). If P is a subgroup of I

K;m

containing P

K;m;S

for some m and S, then

there exists an abelian extension L over K, rami�ed only over the primes in m, the kernel of whose Artin

map (restricted to I

K;m

) is precisely P .

In particular, if P is the group of principal ideals, the corresponding extension is the maximal abelian

unrami�ed extension of K, also known as the Hilbert class �eld of K. More generally, if o is an order of K

(a subring of K which is a Z-module of rank [K : Q]) and P is the group of ideals which restrict to principal

ideals in o, the corresponding extension is called the ring class �eld of o. In particular, the Hilbert class

�eld is the ring class �eld of the maximal order; in general, the ring class �eld of an order of conductor N is

intermediate between the Hilbert class �eld and the ray class �eld of conductor N .

2. Intermezzo: Orders in Imaginary Quadratic Fields

Before proceeding, a few words of explanation about orders. Because orders are not Dedekind domains

(failing to be integrally closed) in general, they do not have unique factorization of ideals, nor of elements
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even when the class group is trivial. Of course, if you invert the conductor, the result becomes a Dedekind

domain (since you get the same ring as if you had inverted the conductor in the maximal order), so unique

factorization holds for ideals prime to the conductor.

The orders of an imaginary quadratic �eld K are easy to classify.

Theorem 3. If o is an order in the imaginary quadratic �eld K, then there exists N 2 N such that o =

Z+No

K

.

Proof is left as an exercise.

Likewise, the class group Pic(o) of an order is easily related to the class group of the maximal order. This

formula will come up in Gross' paper.

Theorem 4. If o = Z+No

K

, then the quotient Pic(o)=Pic(o

K

) is isomorphic to (o

K

=No

K

)

�

=[(Z=NZ)

�

o

�

K

].

Of course, if K is not Q(i) or Q(

p

�3), the term o

�

K

is redundant.

Proof. The quotient may be identi�ed with the quotient of the group of ideals which are principal in o

K

by

the group of those which remain principal in o. Now if � is the generator of a given principal ideal, then �

lies in o if and only if it is congruent modulo N to an element of Z.

3. Elliptic Curves with Complex Multiplication

Now let us proceed to elliptic curves with complex multiplication and their relevance to ring class �elds.

Recall that the ring of endomorphisms of an elliptic curve over a �eld of characteristic 0 is either Z or an

order in an imaginary quadratic �eld. (Over C , the elliptic curve can be written as C modulo the lattice

h1; �i, and an endomorphism must act as multiplication by a complex number � on C so as to map the lattice

into itself. Thus � = a + b� and �� = c + d� , whence � and � are quadratic over Q; for � to generate a

lattice with 1, Q(� ) must be imaginary quadratic.) If the latter holds, we say the elliptic curve has complex

multiplication, or CM for short, by that order.

Beware that there are two ways to identify o, as an abstract ring, with the corresponding ring of endo-

morphisms of an elliptic curve with CM by o. We choose the one with the property that � 2 o acts on the

tangent space to the elliptic curve at the origin by multiplication by � (and not by �).

The reader is probably familiar with the notation E[n] used to denote the group of n-torsion points on an

elliptic curve E. If E has CM by o, this notation can be extended: if � is an element of o, we denote by E[�]

the kernel of multiplication by �. Furthermore, if m is an ideal of E, we denote by E[m] the intersection of

E[�] over all � 2 m. It can be shown that E[m] is a �nite at group scheme of orderNm and that E=E[m] is

again an elliptic curve. Moreover, if m is prime to the conductor of o, then E again has CM by o (otherwise,

E may have CM by a di�erent order).

To reiterate the previous paragraph in terms of lattices: if E

�

=

C =�, then E[m]

�

=

m

�1

�=� and E=E[m]

�

=

C =m

�1

� (where m

�1

� is the set of x 2 C such that xm � �), and the isogeny E ! E=E[m] is simply the

map C =� ! C =m

�1

� induced by the identity map on C .

Fixing an order o, we see that the lattices stabilized by multiplication by o are, up to homothety, repre-

sentatives of the ideal classes of o. In particular, there are �nitely many of them, and any two are isogenous.

Moreover, the j(E) all generate the same �eld over K, since one can �nd an elliptic curve with j-invariant

j(E) de�ned over K(j(E)), and then this curve is isogenous over this same �eld to curves with all of the

other possible j-invariants.

Theorem 5. Let E be an elliptic curve over a �eld of characteristic 0 having complex multiplication. Then

j(E) is an algebraic number.

Proof. Let o = Gal(E). Any automorphism of C over Q carries E to another elliptic curve with CM by o,

and the number of possible j-invariants of these is �nite.

In other words, all of the isomorphism classes over C of elliptic curves with complex multiplication by a given

order o � K are represented by curves de�ned over number �elds. When we say such a curve is de�ned over

a number �eld L, we insist that L contain K; this is enough to force o to act by endomorphisms de�ned over
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L. (Proof: each endomorphism is determined by its action on the tangent space at the origin; since these

actions are multiplications by elements of K, they are invariant under Gal(L=L).)

4. CM and Class Field Theory

Our goal is to prove the following.

Theorem 6. Let K be an imaginary quadratic �eld, o an order of K and E an elliptic curve with com-

plex multiplication by o. Then M = K(j(E)) is the ring class �eld of o. More precisely, there exists an

isomorphism � : Pic(o)! Gal(M=K) such that

j(E)

�(p)

= j(E=E[p])(1)

for all primes p not dividing the conductor of o, and the Artin map factors through � (that is, �(p) is the

Artin symbol of p).

Our approach is to reduce elliptic curves modulo primes and use facts about separability of isogenies in

positive characteristic.

First we show that M contains the other j-invariants of curves with CM by o. To see this, choose E to

be de�ned over M ; then for each ideal class of o, choose a representative m prime to the conductor N of o,

and note that E=E[m] is de�ned over M , as then is its j-invariant.

We hereby declare the following primes of o to be \bad":

� all primes lying under primes of bad reduction for E;

� all primes dividing primes of Q which ramify in M (so in particular, all primes dividing the di�erence

between any two of the CM j-invariants);

� all primes dividing the conductor of o.

We begin by proving (1) for the remaining primes, beginning with the following congruence.

Theorem 7. Let K be an imaginary quadratic �eld, o an order of K, and E an elliptic curve de�ned over

a number �eld L containing K with complex multiplication by o. Then for every prime p of o which is not

bad and every prime q of L over p,

j(E)

Np

� j(E=E[p]) (mod q):

Proof. First suppose p has absolute degree 1 and let p = Np. Choose an ideal r prime to the conductor N

of o and to p, and lying in the ideal class of p. Then pr is principal; let � be a generator. Now consider the

isogenies

E ! E

0

= E=[p]! E

0

=E

0

[r] = E=E[pr] = E=E[�] = E:

The composite map from E to E is precisely multiplication by �, which on the residue �eld is inseparable

(since � 2 p). On the other hand, the second isogeny has degree Nr prime to the residue characteristic, and

so is separable. Therefore the isogeny the isogeny E ! E=E[p] must be inseparable. In particular, it factors

through the Frobenius isogeny E 7! E

Np

and the other factor has degree 1, so is an isomorphism.

Now suppose p has absolute degree 2 and let p = (p). Then our goal is to show that j(E)

p

2

� j(E). We

have that multiplication by p on E factors as the Frobenius isogeny F followed by its dual

^

F , and the former

is inseparable. We shall show that the latter is also inseparable.

Let � be the Frobenius of q over Q, so that j(E)

�

� E

p

(mod p). Now j(E)

�

is one of the CM j-invariants,

so there exists an ideal r such that j(E

�

=E

�

[r]) = j(E). Now consider the isogenies

E ! E

0

= E

�

! E

0

=E[r] = E:

The composite map from E to E is multiplication by some � 2 o, which must lie in p since on the residue

�eld the map is inseparable. (Its �rst factor is precisely the Frobenius isogeny.) The dual isogeny to

multiplication by � is multiplication by �, which is also inseparable because � 2 p. On the other hand, the

dual of a composite is the composite of the duals in the opposite order, and the dual of E

�

! E

0

=[r]
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From this let us deduce our main theorem. First, note that for q above a good prime, the Frobenius � of

q satis�es j(E)

�

= j(E=E[p]). (We know that the left side is one of the CM j-invariants, that the two sides

are congruent modulo q, and that no two distinct CM j-invariants are congruent modulo q.) In particular,

� does not depend on q; therefore M=K is abelian. Now de�ne � on an ideal class by choosing a prime p in

that class and mapping the class to the Artin symbol � of that prime. From the equality j(E)

�

= j(E=E[p]),

we know � depends only on the isomorphism class of E=E[p], which is to say on the class of p, and not on

p itself.

We see that � is surjective by

�

Cebotarev (every element of Galois occurs as an Artin symbol). Moreover,

it is injective because if the classes of p

1

and p

2

both map to �, then E=E[p

1

] and E=E[p

2

] have the same

j-invariant, which implies that p

1

and p

2

are in the same class. Thus � is an isomorphism and the Artin

map factors through it.

In particular, up to a �nite number, the same primes of K are split completely in M and the ring class

�eld of o. (A prime coprime to N is split in the ring class �eld if and only if it is in the principal ideal

class.) Thus (by applying

�

Cebotarev to the compositum of these two extensions) these extensions must be

the same, as desired. (Note that the previous assertion uses the fact that both extensions are known at this

point to be abelian.)

Since we were explicitly able to describe the Artin map on j(E), all we really have used class �eld theory

for is to control the rami�cation of the ring class �eld. It should be noted that this can also be done directly.

Theorem 8. Let K be an imaginary quadratic �eld, o an order of K, and E an elliptic curve de�ned over

a number �eld L containing K with complex multiplication by o. Then E has potentially good reduction

everywhere. (In particular, its j-invariant is integral.)

This result is due to Serre and Tate. (See AEC2 for a proof sketch.) It implies that the �eld generated

by the j(E) is unrami�ed away from the conductor of o.

We won't need to do so here, but one can go further and describe all of the abelian extensions of K. In

fact, any �nite abelian extension of K is contained in the �eld obtained by adjoining the j-invariant of a

curve with CM in the maximal order of K, together with the coordinates of a torsion point on the curve.

(That extension is actually not abelian, but if one instead takes the coordinates of the image of the torsion

point after quotienting the curve by its automorphism group, one gets a smaller extension which is in fact

abelian.)


