KOLYVAGIN’S CONSTRUCTION OF COHOMOLOGY CLASSES

DAVID JAO

ABSTRACT. These notes present the construction of the cohomology classes
¢(n),d(n) from the Heegner points yn, given in Section 4 of [Gr].

Fix as before an n = []!, squarefree, coprime to NDp, with each conjugacy
class Frob(l) in Gal(K(E,)/Q) containing the complex conjugation automorphism
7. Let G, := Gal(K,/K) denote the Galois group of K, over K, and recall that
G, is the Galois group of K, over K;. Choose a set S of coset representatives for
G, in G, and define

(41) P, = Z U(Dnyn);
oES

where the sum is taken in E(K,,).

Proposition 3.6 says the class [Dyy,] in E(K,,)/pE(K,) is fixed by G,,. It follows
that the class [P,] in E(K,)/pE(K,) is fixed by all of G,,. The class [P,] does not
depend on the choice of S. However, recall that D,, was defined as [[ D;, where

I+1

l .
D= iai=-y %1,
i=1

i=1

Here oy is a chosen generator of GG, a cyclic group of order [ + 1. Since p divides
[+1 (by (3.3)), we see that [D,y,] depends on the choice of generator o; of G; up
to scaling by (Z/p)*. Thus the class [P,] also depends on the choice of generator
up to scaling by (Z/p)*.

Also observe that

P = Z oy = Trig* (y1) = Y1,k
seGal(K, /K)

The exact sequence 0 — E, — E —~3 E — 0 gives a long exact sequence in
Galois cohomology, a portion of which is

E(K) % E(K) % H'(K,E,) — H'(K,E) % H'(K, E)
Taking cokernel on the left and kernel on the right yields the short exact sequence
0 — E(K)/pE(K) % H'(K,E,) — H'(K, E), — 0.
We can play the same game with H9(K,,-) to get the short exact sequence

0 — E(K,)/pE(K,) 2 H (K., E,) — H" (K., E), — 0.
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Putting it all together, we get the commutative diagram
(4.2)

H' (Ko /K, B(Kn))p

Inf

E(K 4
0 pE‘((K)) H'(K,E,) — H'(K,E),

l ~ \Res Res

Gn ¢
[ E(K» . 1 Gn __, 1 Gn
0 (,, E((KJ)) H' (K, Ep) HY (K, E)

where all the horizontal and vertical sequences are exact.

We show that Res : HY(K,E,) — H'(K,, E,)9" is an isomorphism in the
diagram above by showing that E,(K},) is trivial in the Inf-Res exact sequence
0 — H'(Kn/K, Ey(Kyn)) =5 H' (K, By) =% H'(Ky, B,)9 — H(Ku /K, By(Ky)
Lemma 4.3. The curve E has no p—torsion rational over K,.

Proof. We know that E,(K) is (Z/p)?, so if E,(K,) is not zero then the only pos-
sibilities are Z /p and (Z/p)?. Suppose first that E,(K,) = Z/p. Let o € Gg. For
P € E,(K,), the point o(P) is still in E(K,) and is still annihilated by p, so o(P) €
E,(K,). Thus Gal(Q(E,)/Q) fixes the one dimensional subspace E,(K,) = Z/p
of (Z/p)?, so it is a Borel subgroup of GL2(Z /p). This contradicts the assumption,
made in the beginning of Section 2, that Gal(Q(E,)/Q) = GL2(Z/p).

Now suppose E,(K,,) = E, = (Z/p)?. Then Q(E,) C K, so we have a surjection
Gal(K,,/Q) - Gal(Q(E,)/Q) = GL2(Z/p). But Gal(K,/Q) is a group of dihedral
type (has an abelian normal subgroup of index 2), and we know from group theory
that GLy(Z/p) is not a quotient of any group of dihedral type, for p > 2. O

Kolyvagin’s cohomology classes are defined as follows. The class ¢(n) € H' (K, E,)
is defined by

(4.4) Res ¢(n) = 6,[P,].
Since Res is an isomorphism, this equation uniquely specifies ¢(n). The class d(n)
is the image of ¢(n) in H*(K, E),. Now Res d(n) € H'(K,, E)J* comes from [P,]
which is two terms back in the exact sequence, so it is 0. Thus d(n) lifts via Inf,
yielding a unique class d(n) € H' (K, /K, E(K,)), such that
(4.5) Inf d(n) = d(n).

Explicitly, c¢(n) is represented by the cocycle f where

(4.6) f@) =0 (})P) - 2P, - %
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for 0 € G. Here P, is any p-th root of P, in E(K), and
p-th root of (6 —1) P, in E(K,,) (existence follows from Proposition 3.6; uniqueness
is by Lemma 4.3). To see that this cocycle works, we need only compute d,,[P,] and
see that it is equal to Res f. Recall that 6,[P,] is defined by lifting the point P, via
the “multiplication by p” map, taking the coboundary in E coefficients, and then
treating the result as a cocycle over E,, coefficients. Thus 0,[F,] is the coboundary

sending
1 1
oo <—Pn> — -P,.
p p
On the other hand, Res f is the cocycle f with application restricted to o € Gk, .

For these o, the term (o — 1)P, is trivial, so

(Res f)(0) = o <1—1)Pn> - %Pn.

Thus f does indeed represent the class ¢(n).
When we push our representative of c(n) over to H!(K, E),, we obtain the
following cocycle representative for d(n):

_(e=1)P,

% is the unique

, foro € Gg.

The term o (%Pn) — %Pn has dropped out, since in H'(K, E), this term is a
coboundary. Lifting via Inf, we obtain the cocycle

flo) = —%, for o € G,
p

representing d(n).

Proposition 4.7.
1. The class c(n) is trivial in H*(K, E,) if and only if P, € pE(K,,).
2. The classes d(n) and ci(n) are trivial in their respective cohomology groups if
and only if P, € pE(K,) + E(K).

Proof. Apply the isomorphism Res to ¢(n). The first statement then follows imme-
diately from injectivity of d,, in the diagram (4.2).

For the second statement, injectivity of Inf in (4.2) implies that d(n) and d(n)
are either both trivial or both nontrivial. But d(n) comes from ¢(n), so d(n) is
trivial if and only if ¢(n) € ImJ. Write ¢(n) = 6(P); then upon pushing P down to
E(K,,) we see from injectivity of ¢,, that P = P,, (mod pE(K,)). Therefore, d(n)
is trivial if and only if there exists P € E(K) such that P = P, (mod pE(K,)),
which is what we wanted to prove. O

By Proposition 4.7, the class ¢(1) is trivial if and only if P = y; g is divisible
by p in E(K). The classes d(1) and d(1) are always trivial since P, = y; i is in
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