
On Tate Local Duality

Mihran Papikian

1 Tate local duality

I will try to explain and prove all the statements in Section 7 of B. Gross \Kolyvagin's work on

modular elliptic curves"

Let F

q

be a �nite �eld, and let g be its absolute Galois group. Hence g

�

=

b

Z, topologically

generated by the Frobenius automorphism. Let A be a topological g�module, i.e. for each a 2 A

there is a positive integer n such that Frob

n

a = a (for us A will be either an elliptic curve or some

torsion group). Thus the group A is the union of its subgroups A

g

n

, the latter being g=g

n

-module,

where g

n

= n

b

Z is an open subgroup of index n. The cohomology groups of g with values in A are

de�ned by the formula

H

s

(g;A) = lim

�!

H

s

(g=g

n

; A

g

n

)

Theorem 1.1 If A is a torsion group or a divisible group such that A

g

is torsion, then

H

s

(g;A) =

8

>

>

>

<

>

>

>

:

A

g

s = 0;

A=(Frob� 1)A; the largest quotient on which g acts trivially;

0 s � 2:

Proof. Suppose �rst A is �nite. Denote byD := Frob�1 andN

n

:= 1+Frob+Frob

2

+� � �+Frob

n�1

.

Then a standart fact from homological algebra implies, since g=g

n

is a cyclic group, that the

following complex computes the cohomology groups of A

g

n

as a g=g

n

-module

0

//

A

g

n

D

//

A

g

n

N

n

//

A

g

n

D

//

A

g

n

N

n

//

A

g

n

D

//

A

g

n

N

n

//

� � �

More precisely, H

0

(g=g

n

; A

g

n

) = A

g

, H

2m

(g=g

n

; A

g

n

) = ker (DA

g

n

)=N

n

A

g

n

= A

g

=N

n

A

g

n

, and

H

2m�1

(g=g

n

; A

g

n

) = ker (N

n

A

g

n

)=DA

g

n

, where m � 1.

To compute H

s

(g;A) one has to know the connecting homomorphisms between H

s

(g=g

n

; A

g

n

)

and H

s

(g=g

nm

; A

g

nm

) for an arbitrary m, which appear in the directed system lim

�!

H

s

(g=g

n

; A

g

n

).

1
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The connecting homomorphisms should make the following diagram commutative

0

//

A

g

n

D

//

1

��

A

g

n

N

n

//

1

��

A

g

n

D

//

m

��

A

g

n

N

n

//

m

��

A

g

n

D

//

m

2

��

A

g

n

N

n

//

m

2

��

� � �

0

//

A

g

nm

D

//

A

g

nm

N

nm

//

A

g

nm

D

//

A

g

nm

N

nm

//

A

g

nm

D

//

A

g

nm

N

nm

//

� � �

and it is easy to see that the �rst map on the left is isomorphism asH

0

(g=g

n

; A

g

n

) = A

g

independent

of n. For the diagram to commute the rest of the connecting homomorphisms should be multiplica-

tions by an appropriate power of m as marked, since for any a 2 A

g

n

N

nm

a = m �N

n

a. But then

if m is a multiple of the order of A, these homomorphisms are zero, hence lim

�!

H

s

(g=g

n

; A

g

n

) = 0

for s � 2.

If A is a torsion group, then A = lim

�!

A

�

, where A

�

are �nite and stable under g, whence

H

s

(g;A) = lim

�!

H

s

(g;A

�

) = 0.

Finally, suppose A is divisible. If n � 1, denote by A

n

the kernel of multiplication by n on A.

The exact sequence (here we use divisibility)

0

//

A

n

//

A

n

//

A

//

0

induces a long exact sequence of cohomology groups

� � �

//

H

s

(g;A

n

)

//

H

s

(g;A)

n

//

H

s

(g;A)

//

H

s+1

(g;A

n

)

//

� � �

By the preceding argument H

s

(g;A

n

) = H

s+1

(g;A

n

) = 0. Hence multiplication by n is an isomor-

phism on H

s

(g;A) for any n � 1. But this is a torsion group, since it is a direct limit of torsion

groups, so it must be zero.

Now to complete the proof of the proposition it remains to show that when A

g

is torsion then

any element of A is in the kernel of N

n

for some n. Indeed, since A is a topological g�module for

any a 2 A, there is a positive integer n such that Frob

n

a = a. This implies that N

n

a 2 A

g

. Let m

be the order of N

n

a. Then N

nm

a = m �N

n

a = 0.

It is also clear from the last argument that the condition of A

g

being torsion is necessary for

the �rst cohomology to have the given form, as if there is an element b in A

g

of in�nite order then

N

n

b = n � b is non-zero for any n. Ref. Serre - Local Fields, Ch XIII, 1, 2. 2

From here on K is a local �eld, with ring of integers O, maximal ideal � and �nite residue �eld

F of characteristic `. Denote by G

K

its absolute Galois group. We let E be an elliptic curve over

K with good reduction over O.

Let p be a prime, with p 6= `. Then E

p

is a �nite etale group scheme of rank p

2

over O. We

also will be denoting by g = Gal(K

un

=K) the Galois group of the maximal unrami�ed extension



3

of K, which is isomorphic to Gal(F

ab

=F ). Let

e

E(F ) be the reduction of E then there is an exact

sequence

0

//

E

1

(K)

//

E(K)

//

e

E(F )

//

0

where E

1

(K) can be expressed as the �-values of a certain formal group, it is pro-` and multipli-

cation by p is an isomorphism.

Apply snake lemma to the following commutative diagram

0

//

E

1

(K)

p

��

//

E(K)

p

��

//

e

E(F )

p

��

//

0

0

//

E

1

(K)

//

E(K)

//

e

E(F )

//

0

Since the cokernel of the left map is 0 we have

E(K)=pE(K)

�

=

e

E(F )=p

e

E(F ) (1)

From Kummer sequence

0

//

e

E

p

//

e

E(F )

p

//

e

E(F )

//

0

get

0

//

e

E(F )=p

e

E(F )

//

H

1

(g;

e

E

p

)

//

H

1

(g;

e

E) =

e

E=(Frob� 1)

e

E

The last equality comes from (1.1).

(Frob� 1) has �nite �bres and has Zariski-closed image (because

e

E is complete) of dimension

one (because �bres have dimension 0). Hence it is surjective as a morphism of algebraic varieties

1

. This implies that the last cohomology group vanishes (special case of Lang's theorem) and we

obtain

E(K)=pE(K)

�

=

e

E(F )=p

e

E(F )

�

=

H

1

(g;

e

E

p

)

�

=

H

1

(g;E

p

)

since p-torsion injects into

e

E.

Theorem 1.2 (Tate Local Duality) For all i, H

i

(G

K

; E

p

) is �nite, and there are alternating,

non-degenerate pairings

< ; > H

i

(G

K

; E

p

)
H

2�i

(G

K

; E

p

) �! Z=pZ

induced by cup product, Weil pairing and the invariant map of the Class Field Theory.

1

This argument appears in the email of Peter Clark, as well as in a proof of the exactness of Kummer sequence

for elliptic curves.
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Remark H

2

(G

K

; �

p

) = Z=pZ from Kummer sequence

0

//

�

p

//

(K

al

)

�

p

//

(K

al

)

�

//

0

by applying Hilbert 90, and that H

2

(G

K

; (K

al

)

�

) = Q=Z:

It is interesting to observe that Weil pairing is also a duality statement in disguise. Believe

for a moment in the existence of cohomology theory for algebraic varieties which behaives like the

singular cohomology in topology. Then the topological Poincare duality for a torus (our case) gives

a perfect pairing of

H

1

(E(C);Z=pZ)
H

1

(E(C);Z=pZ) �! H

2

(E(C);Z=pZ)

�

=

Z=pZ

and the same statement for etale cohomology (now E is a proper algebraic curve over algebraicaly

closed �eld such as K

al

and Z=pZ is a locally constant sheaf on it) is

H

1

et

(E;Z=pZ)
H

1

et

(E;Z=pZ) �! H

2

et

(E;Z=pZ)

�

=

Z=pZ

(the last equality follows e.g. from the comparison theorem: H

i

et

(E;Z=pZ) = H

i

(E(C);Z=pZ)).

Yet another (non-trivial) theorem states that H

1

et

(E;Z=pZ)

�

=

Jac(E)

p

= E

p

. Putting all together

we have a non-degenerate, alternaiting pairing E

p

�E

p

�! Z=pZ. Unscrewing the map which goes

into the algebraic version of Poincare duality, one essentially obtains the proof in Silverman, Ch

III.

Proposition 1.3 Under the Tate pairing H

1

(g;E

p

) and H

1

(g;E

p

) are orthogonal, i.e. the subspace

E(K)=pE(K)

�

=

H

1

(g;E

p

) is isotropic for the pairing < � ; � >.

Proof. We have a commutative diagram

H

1

(g;E

p

)
H

1

(g;E

p

)

inf
inf

//

��

H

1

(G

K

; E

p

)
H

1

(G

K

; E

p

)

��

H

2

(g;E

p


 E

p

)

��

H

2

(G

K

; E

p


 E

p

)

��

H

2

(g;Z=pZ)

inf

//

H

2

(G

K

;Z=pZ)

��

Z=pZ

But H

2

(g;Z=pZ) = 0 by (1.1), thus the claim. 2
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Theorem 1.4 (Restricted Tate Local Duality) The pairing < � ; � > induces a non-degenerate

pairing of Z=pZ-vector spaces (of dimension � 2)

< � ; � > : E(K)=pE(K)
H

1

(G

K

; E)

p

�! Z=pZ

Proof. The absolute Galois group G

K

surjects onto g and we have a natural exact sequence

0

//

I

//

G

K

//

g

//

0

where I is the inertia subgroup.

Take the Inf-Res of the above sequence

0

//

H

1

(g;E

I

p

)

//

H

1

(G

K

; E

p

)

//

H

1

(I; E

p

)

g

//

H

2

(g;E

I

p

)

The last group is zero by (1.1) and E

p

is stable under I as E has a good reduction. So

0

//

H

1

(g;E

p

)

//

H

1

(G

K

; E

p

)

//

H

1

(I; E

p

)

g

//

0

Kummer sequence yields

0

//

E(K)=pE(K)

//

H

1

(G

K

; E

p

)

//

H

1

(G

K

; E)

p

//

0

:

In particular,

H

1

(I; E

p

)

g

�

=

H

1

(G

K

; E)

p

:

We want to analize H

1

(I; E

p

) to see which portion of it is non-trivial.

Let � be the image of I in the tamely rami�ed part of G

K

, i.e.

0

//

P

//

I

//

�

//

0

where P is the wild-rami�cation group which is a rather complicated group. On the other hand it

is well-known that �

�

=

Q

s6=`

Z

s

(1).

The Inf-Res of the last sequence gives

0

//

H

1

(�; E

p

)

//

H

1

(I; E

p

)

//

H

1

(P; E

p

)

�

:

But P is pro-`, hence

H

1

(P; E

p

) = Hom (P; E

p

) = 0:

Finally,

H

1

(I; E

p

)

g

= H

1

(�; E

p

)

g

= Hom (�; E

p

)

g

= Hom (

Y

s6=`

Z

s

(1); E

p

)

g

=
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= Hom (Z

p

(1); E

p

)

g

= Hom (lim

 �

�

p

n

; E

p

)

g

= Hom (�

p

; E

p

)

g

:

Weil pairing is non-degenerate and Galois invariant, so the last group has the same dimension as

E(K)

p

.

From (1.1) H

1

(g;E

p

) = E

p

=(Frob� 1)E

p

=

e

E(F )

p

= E(K)

p

. On the other hand H

1

(g;E

p

) =

E(K)=pE(K). Together

E(K)=pE(K) = E(K)

p

:

(If the last statement seems bizarre to you keep in mind that we are working over complete �eld).

Consider the commutative diagram

0

//

(H

1

(G

K

; E)

p

)

�

//

(H

1

(G

K

; E

p

))

�

//

(E(K)=pE(K))

�

//

0

0

//

E(K)=pE(K)

//

OO

H

1

(G

K

; E

p

)

//

�

=

OO

H

1

(G

K

; E)

p

//

OO

0

Where the upper row is the Cartier dual of the lower row, and the middle map is an isomorphism

as Tate Local Duality is a perfect pairing.

Left map is injective since E(K)=pE(K) is isotropic. But we saw that dim(E(K)=pE(K)) =

dim(E(K)

p

) = dimH

1

(I; E

p

)

g

= dimH

1

(G

K

; E)

p

. Hence it is an isomorphism. Similarly, for the

right map.

Finally,

E(K)=pE(K)
H

1

(G

K

; E)

p

�! Z=pZ

is a non-degenerate pairing. 2

2 Hilbert symbols and Kolyvagin's formula

We are still assuming that K is a local �eld with uniformizer �, and residue �eld F of characteristic

`. Let U

K

be the group of units in K

�

, i.e.

U

K

= fx 2 K

�

j val (x) = 0g:

Then K

�

= U

K

��

Z

. Fix �, primitive (jF j - 1) - st root of unity in K (which exists e.g. by Hensels

lemma), and � = �

(jF j�1)=p

, primitive p

th

root of 1. Recall the main theorems of local class �eld

theory

Theorem 2.1 (Local class �eld theory) For any nonarchimedian local �eld, there is a unique

homomorphism, the local Artin map,

�

K

: K

�

�! Gal(K

ab

=K)
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with the following properties:

(a) For any prime element � of K and any �nite unrami�ed extension L of K, �

K

(�) j L =

Frob

L=K

(b) For any �nite abelian extension L of K, Nm

L=K

(L

�

) is contained in the kernel of a !

�

K

(a) j L, and �

K

induces an isomorphism

�

L=K

: K

�

=Nm

L=K

(L

�

) �! Gal(L=K)

Moreover

(c) A subgroup N of K

�

is of the form Nm

L=K

(L

�

) for some �nite abelian extension L of K i�

it is of �nite index and open.

From this theorem it is easy to see that for any unrami�ed extension U

K

is in the image of the

norm map (u� and � are both uniformizers =) �(u) = �(u�) � �(�

�1

) = Frob � Frob

�1

= 1), and

for totally rami�ed extensions � is in the image of norm.

From now on we assume that E

p

is rational over K, which by Weil pairing implies that K

contains p

th

root � of 1.

Taking cohomology of the Kummer sequence yields

H

1

(G

K

; �

p

)

�

=

K

�

=K

�p

H

2

(G

K

; �

p

)

�

=

Z=pZ

The cup-product pairing

H

2

(G

K

; �

p

)
H

0

(G

K

; �

p

) �! H

2

(G

K

; �

p


 �

p

)

de�nes an isomorphism

H

2

(G

K

; �

p

)
 �

p

�! H

2

(G

K

; �

p


 �

p

)

Hence

H

2

(G

K

; �

p


 �

p

)

�

=

(Z=pZ)
 �

p

�

=

�

p

The cup-product for

H

1

(G

K

; �

p

)
H

1

(G

K

; �

p

) �! H

2

(G

K

; �

p


 �

p

)

becomes a pairing

a; b �! (a; b) : K

�

=K

�p

�K

�

=K

�p

�! �

p
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This pairing is called the Hilbert symbol.

The �rst step in proving Kolyvagin's formula for Tate's pairing (see below) is to understand the

Hilbert symbol.

Theorem 2.2 The Hilbert symbol has the following properties

(a) It is bi-multiplicative, i.e.

(aa

0

; b) = (a; b) (a

0

; b)

(a; bb

0

) = (a; b) (a; b

0

)

(b) It is skew-symmetric, i.e.

(b; a) = (a; b)

�1

(c) It is nondegenerate, i.e.

(a; b) = 1 for all b 2 K

�

=K

�p

=) a 2 K

�p

(a; b) = 1 for all a 2 K

�

=K

�p

=) b 2 K

�p

(d) (a, b) = 1 if and only if b is a norm from K[a

1=p

]

Remark (a) and (b) follow from de�nition of cup-product, and (c) is a form of Tate local duality,

(d) is harder.

Theorem 2.3 The Hilbert symbol is related to the local Artin map by the formula

�(b)(a

1=p

) = (a; b)a

1=p

Note that Galois theory tells us that, for any � 2 Gal(K[a

1=p

]=K), �a

1=p

= �

0

a

1=p

for some p

th

root

of one �

0

, and so the point of the formula is that roots of 1 are the same.

Let G

p

be the Galois group of the largest abelian extension of K of exponent p. Then one of

the consequences of local class �eld theory is that

� : G

p

�

=

K

�

=K

�p

(this statement is also known as Kummer theory).

If b 2 K

�

, de�ne �

b

2 Hom (G

p

; �

p

) by

�

b

(g) =

g(b

1=p

)

b

1=p
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Then we can rewrite (2.3) as

(a; b) = �

b

(�(a)) (2)

De�ne homomorphisms �

a

; �

b

: G

p

�! Z=pZ such that

�

�

a

(g)

= �

a

(g) ; �

�

b

(g)

= �

b

(g):

De�ne an element of H

2

(G

p

; �

p

) by the bilinear form

B

a;b

(g

1

; g

2

) = �

�

a

(g) �

b

(g)

:

To see that this is a 2-cocycle one has to check that

B

a;b

(g

1

; g

2

) �B

a;b

(g

1

g

2

; g

3

) = (g

1

�B

a;b

(g

2

; g

3

)) �B

a;b

(g

1

; g

2

g

3

)

and since the action of G

p

on �

p

is trivial the equality becomes

B

a;b

(g

1

; g

2

) �B

a;b

(g

1

g

2

; g

3

) = B

a;b

(g

2

; g

3

) �B

a;b

(g

1

; g

2

g

3

):

To check this is straightforward using the fact that � is a homomorphism.

Theorem 2.4

(a; b) = �

inv B

a;b

(3)

Proof. This follows from a general theorem of computing cup-products (here we regard �

a

and �

b

as elements in H

1

(G

p

; �

p

)), which in our case states

�

b

(�(a)) = �

inv (B

a;b

)

(Ref. Serre, Local �elds, Ch XI + Appendix).

Here inv is the invariant map

H

2

(G

K

; �

p

)

�

=

H

2

(G

K

;K

al �

)[p] �! Z=pZ

To get the theorem use (2.3). I have to remark that to prove (2.3) one needs the above relation. 2

Now we calculate one speci�c B

a;b

.

First we compute

(�; �) =

�(�)(�

1=p

)

�

1=p

=

(�

1=p

)

jF j

�

1=p

= �

(jF j�1)=p

= �
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Then (�; �) = �

�1

, and (�; �) = 1, (�; �) = 1. The last two follow, for example, from the fact that

a is a norm from K[a

1=p

].

For any �xed a; b; B

a;b

as a quadratic form is uniquely determined by its values on four 2-tuples

(�; �); (�; �); (�; �); (�; �), since

G

p

�

=

K

�

=K

�p

�

=

�

Z=pZ

�

Z=pZ

(for the last isomorphism it is important that p 6= `). The maximal abelian extension of K

of exponent p lies in the tamely rami�ed part of K

al

=K (because of p). One may think of it as

consisting of the union of totally tamely rami�ed part, when we attach p

th

root of �, and unrami�ed

part, when we attach p

th

root of unity, e.g. �

1=p

, which corresponds to the unique degree p extension

of the residue �eld. After identifying K

�

=K

�p

and G

p

via � ( i.e. denote the image �(a) in G

p

also

by a) we can treat � as the generator of the unrami�ed part of G

p

(since �(�) = Frob), and � as

the generator of the totally rami�ed part, for a similar reason. Then what the above calculations

of Hilbert symbols show is that

B

�;�

(�; �) = �

�

�

(�) �

�

(�)

= �

�

(�)

�

�

(�)

= (�; �)

�

�

(�)

= 1

Similarly, one obtains

B

�;�

(�; �) = 1 ; B

�;�

(�; �) = 1

And �nally,

B

�;�

(�; �) = �

�

�

(�) �

�

(�)

= �

�

(�)

�

�

(�)

=

�

�

�1

�

�

�

(�)

=

�

�

�

�

(�)

�

�1

= (�

�

(�))

�1

= �

�1

Let < ; > be the pairing in the restricted Tate local duality theorem.

E(K)=pE(K)

�

=

H

1

(g;E

p

) = Hom(g;E

p

)

�

=

Hom(

Y

s

Z

s

(1); E

p

)

�

=

Hom(Z

p

(1); E

p

)

�

=

Hom(lim

 �

�

p

n

; E

p

) = Hom(�

p

; E

p

)

So to c

1

2 E(K)=pE(K) we associate the corresponding homomorphism

'

1

: �

p

�! E

p

(K)

Similarly, to c

2

2 H

1

(G

k

; E)

p

�

=

H

1

(I; E

p

)

g

�

=

Hom (�

p

; E

p

)

g

�

=

Hom (�

p

; E

p

) associate the

corresponding homomorphism

'

2

: �

p

�! E

p

(K)

Let � be as above, and '

1

(�) = e

1

; '

2

(�) = e

2

in E

p

. Then
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Theorem 2.5 (Kolyvagin)

�

<c

1

; c

2

>

= fe

1

; e

2

g

where f ; g is the Weil pairing on E

p

.

Proof. First extend '

1

and '

2

to a map K

�

=K

�p

�! E

p

in an obvious way

'

1

(�) = e

1

; '

1

(�) = 0

'

2

(�) = 0 ; '

2

(�) = e

2

Now the cup-product '

1

[ '

2

2 H

2

(G

p

; �

p

), which is used to evaluate the Tate pairing, is

described by the bilinear form

B

1

: K

�

=K

�p


K

�

=K

�p

�! �

p

satisfying B

1

(a; b) = f'

1

(a); '

2

(b)g, so

B

1

(�; �) = 1; B

1

(�; �) = fe

1

; e

2

g; B

1

(�; �) = 1; B

1

(�; �) = 1:

We �rst applied the cup-product, then Weil pairing, �nally to get the Tate pairing we have to take

the invariant map H

2

(G

p

; �

p

) �! Z=pZ. So

< �; � >= invB

1

(�; �)

Let fe

1

; e

2

g = �

x

.

Compairing B

1

and B

�;�

, we have B

1

= B

�x

�;�

hence

inv B

1

= (�x)inv B

�;�

Since

�

inv B

�;�

= (�; �) = �

�1

we have inv B

1

= x. Finally

�

<c

1

; c

2

>

= fe

1

; e

2

g

2

Remark This theorem gives a proof of the non-degeneracy of < �; � > modulo the proofs of the

statements from local class �eld theory we have skipped.
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