On Tate Local Duality
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1 Tate local duality

I will try to explain and prove all the statements in Section 7 of B. Gross “Kolyvagin’s work on

modular elliptic curves”

Let F, be a finite field, and let g be its absolute Galois group. Hence g = 2, topologically
generated by the Frobenius automorphism. Let A be a topological g—module, i.e. for each a € A
there is a positive integer n such that Frob™ a = a (for us A will be either an elliptic curve or some
torsion group). Thus the group A is the union of its subgroups A9, the latter being g/g,-module,
where g, = nZ is an open subgroup of index n. The cohomology groups of g with values in A are

defined by the formula
H*(g,A) = lim H*(g/gn, A7)

Theorem 1.1 If A is a torsion group or a divisible group such that A9 is torsion, then

A9 s=0,
H*(g,A) =< A/(Frob—1)A, the largest quotient on which g acts trivially,
0 s>2.

Proof. Suppose first A is finite. Denote by D := Frob—1 and N,, := 1+Frob+Frob>+- - -+ Frob™ 1,
Then a standart fact from homological algebra implies, since g/g, is a cyclic group, that the

following complex computes the cohomology groups of A9 as a g/g,-module

0 AIn A9n AIn AIn A9n AIn

More precisely, H°(g/gn, A9") = A9, H?™(g/gn, A9") = ker (DA9)/N, A9 = A9/N, A% , and
H?™"Y(g/g,, A9") = ker (N, A9")/DA%, where m > 1.
To compute H*(g, A) one has to know the connecting homomorphisms between H*(g/gy, A9")

and H*(g/gnm, A9"™) for an arbitrary m, which appear in the directed system lip H*(g/gy, A9").



The connecting homomorphisms should make the following diagram commutative

D Nn D Nn D Nn
0 A9n A9n A9n A9n A9n A9n
0 Agnm D Agnm Nrm Agnm L Agnm Nrm Agnm D Agnm Nnm

and it is easy to see that the first map on the left is isomorphism as H%(g/g,, A9) = A9 independent
of n. For the diagram to commute the rest of the connecting homomorphisms should be multiplica-
tions by an appropriate power of m as marked, since for any a € A9 Npn,a = m- Nya. But then
if m is a multiple of the order of A, these homomorphisms are zero, hence lim H*(g/gn, A%) =0
for s > 2.

If A is a torsion group, then A = limA,, where A, are finite and stable under g, whence
H*(g,A) = lim H*(g, Aa) = 0.

Finally, suppose A is divisible. If n > 1, denote by A,, the kernel of multiplication by n on A.

The exact sequence (here we use divisibility)

0 A, A
induces a long exact sequence of cohomology groups
T~ Hs(g’ An) - Hs(g,A) 4n>Hs(g’ A) - Hs+l(gaAn) -

By the preceding argument H*(g, A,) = H**1(g, A,) = 0. Hence multiplication by n is an isomor-
phism on H*(g, A) for any n > 1. But this is a torsion group, since it is a direct limit of torsion
groups, so it must be zero.

Now to complete the proof of the proposition it remains to show that when AY is torsion then
any element of A is in the kernel of N,, for some n. Indeed, since A is a topological g—module for
any a € A, there is a positive integer n such that Frob™a = a. This implies that N,a € A9. Let m
be the order of N,a. Then N,,,a = m - N,a = 0.

It is also clear from the last argument that the condition of A9 being torsion is necessary for
the first cohomology to have the given form, as if there is an element b in A9 of infinite order then
N,b =n-b is non-zero for any n. Ref. Serre - Local Fields, Ch XIII, 1, 2. O

From here on K is a local field, with ring of integers O, maximal ideal 7 and finite residue field
F of characteristic £. Denote by G its absolute Galois group. We let E be an elliptic curve over
K with good reduction over O.

Let p be a prime, with p # £. Then E, is a finite etale group scheme of rank p? over 0. We
also will be denoting by g = Gal(K""/K) the Galois group of the maximal unramified extension
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of K, which is isomorphic to Gal(F®/F). Let E(F) be the reduction of E then there is an exact

sequence

0 — E'(K) — E(K) E(F) 0

where E'(K) can be expressed as the 7-values of a certain formal group, it is pro-£ and multipli-
cation by p is an isomorphism.

Apply snake lemma to the following commutative diagram

0—> EY(K) — E(K) E(F) 0
0—> EY(K) — E(K) E(F) 0

Since the cokernel of the left map is 0 we have
E(K)/pE(K) = E(F)/pE(F) (1)

From Kummer sequence

get
0—— E(F)/pE(F) — H'(9,E,) —> H'(g,E) = E/(Frob— 1)E
The last equality comes from (1.1).
(Frob — 1) has finite fibres and has Zariski-closed image (because E is complete) of dimension
one (because fibres have dimension 0). Hence it is surjective as a morphism of algebraic varieties
!, This implies that the last cohomology group vanishes (special case of Lang’s theorem) and we

obtain
E(K)/pE(K) = E(F)/pE(F) = H'(g, E,) = H'(g, E)

since p-torsion injects into F.

Theorem 1.2 (Tate Local Duality) For all i, H(Gk, E,) is finite, and there are alternating,

non-degenerate pairings
<, > H'(Gk, E,) ® H*(Gk, E,) — Z/pZ

induced by cup product, Weil pairing and the invariant map of the Class Field Theory.

!This argument appears in the email of Peter Clark, as well as in a proof of the exactness of Kummer sequence

for elliptic curves.



Remark H?(Gg,upy) = Z/pZ from Kummer sequence
0 — Hp —> (K94)* LA (K4)* —=0
by applying Hilbert 90, and that H?(Gg, (K%)*) = Q/Z.
It is interesting to observe that Weil pairing is also a duality statement in disguise. Believe
for a moment in the existence of cohomology theory for algebraic varieties which behaives like the

singular cohomology in topology. Then the topological Poincare duality for a torus (our case) gives

a perfect pairing of
H'(E(C),Z/pZ) ® H'(E(C),Z/pZ) — H*(E(C),Z/pZ) = Z/pZ

and the same statement for etale cohomology (now E is a proper algebraic curve over algebraicaly

closed field such as K% and Z/pZ is a locally constant sheaf on it) is
Hgt(Ea Z/pZ) ® Helt(Ev Z/pZ) — He2t(Ea Z/pZ) = Z/pz

(the last equality follows e.g. from the comparison theorem: H:,(E,Z/pZ) = H'(E(C),Z/pZ)).
Yet another (non-trivial) theorem states that HY(E,Z/pZ) = Jac(E), = E,. Putting all together
we have a non-degenerate, alternaiting pairing E, x E, — Z/pZ. Unscrewing the map which goes
into the algebraic version of Poincare duality, one essentially obtains the proof in Silverman, Ch
ITI.

Proposition 1.3 Under the Tate pairing H'(g, E,) and H'(g, E,) are orthogonal, i.e. the subspace
E(K)/pE(K) = H(g, Ep) is isotropic for the pairing < - , - >.

Proof. We have a commutative diagram

nfin
H(g, E,) ® H'(g, Ep) “L5"HY (G, B,) ® HY(Gx, Ey)

|

H2(97Ep®Ep) HZ(GKaEp‘X’Ep)
l inf
H*(g,Z/pZ) H?*(Ggk,Z/pZ)

Z/pZ

But H?(g,Z/pZ) = 0 by (1.1), thus the claim. O
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Theorem 1.4 (Restricted Tate Local Duality) The pairing < -, - > induces a non-degenerate
pairing of Z/pZ-vector spaces (of dimension < 2)

<-,->: EB(K)/pE(K)® H'(Gk,E), — Z/pZ
Proof. The absolute Galois group Gk surjects onto g and we have a natural exact sequence

0 A Gk g 0

where Z is the inertia subgroup.

Take the Inf-Res of the above sequence
0> H'(g, Ef) — (G, B,) —> H'(T, ;) —> H(g, Ef)
The last group is zero by (1.1) and E, is stable under Z as E has a good reduction. So
0—> H'(g, Ey) —> H'(Gk, Ey) —> H'(Z, E,)! —>0
Kummer sequence yields
0 — B(K) [pE(K) —> H\(Gx, By) —> H'(Gx, B}, —>0.

In particular,
HY(T, Ep)* = H'(Gk, E)y.

We want to analize H'(Z, E,) to see which portion of it is non-trivial.

Let A be the image of 7 in the tamely ramified part of Gk, i.e.

0 P A A 0

where P is the wild-ramification group which is a rather complicated group. On the other hand it
is well-known that A =[], ., Z,(1).
The Inf-Res of the last sequence gives

0——=HYA,E,) — H\(Z,E,) —= HY(P,E,)~ .

But P is pro-£, hence
HY(P,E,) = Hom (P, E,) = 0.

Finally,

HYZ,Ep)? = H'(A,Ep)? = Hom (A, Ep)? = Hom (][ Zs(1), Bp)? =
s#L



= Hom (Zp(1), Ep)? = Hom (limpn, Ep)? = Hom (pp, Ep)°.

WEeil pairing is non-degenerate and Galois invariant, so the last group has the same dimension as
E(K)p.
From (1.1) H'(g, E,) = E,/(Frob — 1)E, = E(F), = E(K),. On the other hand H'(g, E,) =
E(K)/pE(K). Together
E(K)/pE(K) = E(K)p.

(If the last statement seems bizarre to you keep in mind that we are working over complete field).

Consider the commutative diagram

0 — (H'(Gk, E)p)* — (H'(Gk, Bp))* — (E(K)/pE(K))* —>0

| - T

0 — E(K)/pE(K) H'(Gk, Ep) H'(Gk,E)p

0

Where the upper row is the Cartier dual of the lower row, and the middle map is an isomorphism
as Tate Local Duality is a perfect pairing.

Left map is injective since E(K)/pE(K) is isotropic. But we saw that dim(E(K)/pE(K)) =
dim(E(K),) = dim H'(Z, E,)? = dim H'(Gk, E),. Hence it is an isomorphism. Similarly, for the
right map.

Finally,

E(K)/pE(K)® H'(Gk,E), — Z/pZ

is a non-degenerate pairing. O

2 Hilbert symbols and Kolyvagin’s formula

We are still assuming that K is a local field with uniformizer 7, and residue field F' of characteristic

£. Let Uk be the group of units in K*, i.e.
Uk ={z € K* | val (z) = 0}.

Then K* = Uy x wZ. Fix ¢, primitive (|F|- 1) - st root of unity in K (which exists e.g. by Hensels
lemma), and ¢ = ¢UFI=1/P_ primitive pt* root of 1. Recall the main theorems of local class field

theory

Theorem 2.1 (Local class field theory) For any nonarchimedian local field, there is a unique

homomorphism, the local Artin map,

0k : K* — Gal(K®/K)



with the following properties:

(a) For any prime element m of K and any finite unramified extension L of K, Ok (n) | L =

F’f‘ObL/K

(b) For any finite abelian extension L of K, Nmy k(L) is contained in the kernel of a —

Ok (a) | L, and Ok induces an isomorphism
eL/K : KX/NTTLL/K(LX) — Gal(L/K)
Moreover

(c) A subgroup N of K* is of the form Nmp i (L*) for some finite abelian extension L of K iff

it is of finite index and open.

From this theorem it is easy to see that for any unramified extension Uk is in the image of the
norm map (urm and 7 are both uniformizers = 0(u) = 0(un) - (7 ~1) = Frob- Frob~! = 1), and
for totally ramified extensions 7 is in the image of norm.

From now on we assume that E, is rational over K, which by Weil pairing implies that K
contains p* root ¢ of 1.

Taking cohomology of the Kummer sequence yields
H' (G, 1p) = K* K7
H*(Gr, pp) = Z/pZ
The cup-product pairing
H2(GK7NP) &® HO(GKn“p) — H2(GK,,up ® Kp)

defines an isomorphism

H2(GK;H17) ® pp — HZ(GKvﬂp‘X)HP)

Hence
H2(GKaNp ® pp) = (Z/pZ) ® pp = pyp

The cup-product for
Hl(GKalJ‘P) &® HI(GK’IU’P) — H2(GK7:U‘P ® IU’P)

becomes a pairing
a,b — (a,b) : K*/K*P x K* /|K"P — p,



This pairing is called the Hilbert symbol.

The first step in proving Kolyvagin’s formula for Tate’s pairing (see below) is to understand the
Hilbert symbol.

Theorem 2.2 The Hilbert symbol has the following properties

(a) It is bi-multiplicative, i.e.

(ad',b) = (a,b) (a’,b)

(a,bb’) = (a,b) (a,b)

(b) It is skew-symmetric, i.e.

(b,a) = (a,b) "
(c¢) It is nondegenerate, i.e.
(a,b) =1 forallbe K*/K*P = a € K*P
(a,b) =1 forallae K*/K*P = be K*P
(d) (a, b) = 1 if and only if b is a norm from K[al/?]

Remark (a) and (b) follow from definition of cup-product, and (c) is a form of Tate local duality,
(d) is harder.

Theorem 2.3 The Hilbert symbol is related to the local Artin map by the formula
0(b)(a'/?) = (a,b)a'/”

Note that Galois theory tells us that, for any 7 € Gal(K[a'/?]/K), Ta}/P = ('al/? for some p* root
of one (', and so the point of the formula is that roots of 1 are the same.
Let G, be the Galois group of the largest abelian extension of K of exponent p. Then one of

the consequences of local class field theory is that
6:G, = K*/K"?P

(this statement is also known as Kummer theory).
If b e K*, define ¢, € Hom (Gp, p1p) by

pl/p
d)b(g) = gil/p)




Then we can rewrite (2.3) as
(a,b) = ¢s(6(a)) (2)
Define homomorphisms ¢,, ¢, : G, — Z/pZ such that
(P9 = galg) PP =i(g).
Define an element of H?(G)p, i1,) by the bilinear form
Bay(g1,g2) = (=) #(9),

To see that this is a 2-cocycle one has to check that

Bap(91,92) - Bap(g1 92,93) = (91 - Bap(92,93)) - Bap(91,92 93)

and since the action of G}, on p, is trivial the equality becomes

B p(91,92) - Bap(91 92,93) = Ba,b(92,93) - Bap(91,92 g3)-
To check this is straightforward using the fact that ¢ is a homomorphism.

Theorem 2.4
(a,b) — Cinv Bap (3)

Proof. This follows from a general theorem of computing cup-products (here we regard ¢, and ¢

as elements in H'(Gp, y1,)), which in our case states

$u(6(a)) = ¢ (Bos)

(Ref. Serre, Local fields, Ch XI + Appendix).

Here inv is the invariant map
H?(Gk, pp) = H*(Gr, K *)[p] — Z/pZ

To get the theorem use (2.3). I have to remark that to prove (2.3) one needs the above relation. O

Now we calculate one specific By .

First we compute

6m)(E?) _ €I omnm _

(m, &) = £L/p - £l/p -
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Then (¢,7) = ¢71, and (7, 7) = 1, (§,€) = 1. The last two follow, for example, from the fact that

a is a norm from K[a'/?].

For any fixed a,b, Bg as a quadratic form is uniquely determined by its values on four 2-tuples

(é" é‘)’ (7r7 5)7 (é"/n-)’ (7r7 71—)’ Since
Gp ~ KX/KXp ~ ,n_Z/pZ §Z/pZ

(for the last isomorphism it is important that p # £). The maximal abelian extension of K
of exponent p lies in the tamely ramified part of K% /K (because of p). One may think of it as
consisting of the union of totally tamely ramified part, when we attach pt" root of 7, and unramified
part, when we attach pt” root of unity, e.g. & /P which corresponds to the unique degree p extension
of the residue field. After identifying K* /K *P and G, via 6 ( i.e. denote the image 6(a) in G}, also
by a) we can treat 7 as the generator of the unramified part of G, (since 8(m) = Frob), and £ as

the generator of the totally ramified part, for a similar reason. Then what the above calculations

of Hilbert symbols show is that
Ben(m,m) = (9™ (M = ¢ ()%™ = (,7)%e(™) = 1

Similarly, one obtains
B{,ﬂ(gaﬂ-) =1 ) B{,Tr(gﬂg) =1
And finally,
R 5 N\ Be(m) 3. (r -1 _ _
Be(m,€) = (%™ 90 = ¢ (£)%e(m) = (¢ = (%) T = (gg(m)) P =7

Let <, > be the pairing in the restricted Tate local duality theorem.

E(K)/pE(K) = Hl(gﬁEp) = Hom(g, Ep) = Hom(H Zs(1),Ep) =

Hom(Zy(1), Ep) = Hom(limpyr, Ep) = Hom(pp, Ep)
So to ¢1 € E(K)/pE(K) we associate the corresponding homomorphism
o1 pp — Ep(K)

Similarly, to c2 € HY(Gy, E)p, = HY(Z,E,)9 = Hom (up, Ep)? = Hom (up, E,) associate the
corresponding homomorphism

P2t pp — Ep(K)

Let ¢ be as above, and ¢1(7) =e1, ¢2(§) =ez2 in E,. Then
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Theorem 2.5 (Kolyvagin)

C<cl, co> — {61, 62}

where { , } is the Weil pairing on E,.
Proof. First extend ¢1 and @2 to a map K*/K*P — E, in an obvious way
pr(m)=e1 , ¢1(§) =0

pa(m) =0 , p2(§) =e2

Now the cup-product ¢; U oo € H 2(Gp, fp), which is used to evaluate the Tate pairing, is
described by the bilinear form

B : K*/K*PQK*/K*P — p,
satisfying Bi(a, b) = {p1(a), ¥2(b)}, so
B1(7T77T) - 1, B1(7T,§) = {61362}, B1(§,7T) = 1’ Bl(gﬂg) =1

We first applied the cup-product, then Weil pairing, finally to get the Tate pairing we have to take
the invariant map H2(Gp, pp) — Z/pZ. So

<., ->=1invBi(-,-)

Let {e1,ea} = .
Compairing By and Bg r, we have By = B ~ hence

inv By = (—x)inv Be .

Since
Cinv Ben (5,71') — C_l

we have inv By = z. Finally

(=27 = {e1, e}

Remark This theorem gives a proof of the non-degeneracy of < -,- > modulo the proofs of the

statements from local class field theory we have skipped.
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