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1 Hecke Operators

In order to state the Eichler-Shimura congruence we will need to review the

notion of Hecke operators on �

0

(N). We begin with the modular interpreation.

Amodular pair is a pair (�; C) with � a lattice in C , C a cyclic orderN subgroup

of C =�. Let D be the free abelian group on the set of modular pairs. Let n be

a positive integer, and for simplicity assume (n;N) = 1. Then we de�ne

T (n)(�; C) =

X

[�:�

0

]=n;C

0

7!C

(�

0

; C

0

) (1)

that is, there is one term for each index n sublattice �

0

(NB: it would not

necessarily be so if (n;N) > 1) and C

0

is the unique cyclic order N subgroup of

C =�

0

getting mapped to C � C =� via the quotient map. (For n not necessarily

prime to N , the de�nition would be similar except that we would sum over

pairs with nC mapping onto C

0

.) We say that the modular pairs (�

0

; C

0

) in

the sum correspond to (�; C) under the map T (n). In terms of matrices, let

(�

0

; C

0

) correspond to (�; C), and choose positively oriented bases (!

1

; !

2

) (resp.

(!

0

1

; !

0

2

)) of � (�

0

) such that (1=N!

1

; !

2

) ( (1=N!

0

1

; !

0

2

)) is a basis for q

�1

�

(C) (

q

�1

�

0

(C

0

)), and let A =

�

a b

c d

�

be the integer matrix such that

�

!

0

1

!

0

2

�

=

�

a b

c d

��

!

1

!

2

�

We easily see that A is constrained to lie in the set M(n;N) = f

�

a b

c d

�

such

that ad � bc = n, N divides c, (a;N) = 1 g, and conversely any such matrix

carries (�; C) to a corresponding modular pair (�

0

; C

0

). Moreover, �

0

(N) acts

onM(n;N) and stabilizes the set of suitable bases (as above) (!

0

1

; !

0

2

) for �

0

, so

the modular pairs indexed in (1) are parameterized by �

0

(N)nM(n;N). Indeed,

it is easy to give an explicit set of coset representatives, e.g. f

�

a b

0 d

�

; ad =

n; a; d > 0; (a;N) = 1; 0 � b < dg. Taking n = p we see that there are p + 1

terms in the sum; we say that T (p) is a correspondence of degree p+1. We could
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now de�ne T (n) as a linear endomorphism on the space of �

0

(N)-automorphic

forms of weight 2k, via f 7! n

k�1

P


2�

0

(N)nM(n;N)

f j

k


; in fact this interpre-

tation of the Hecke operators will not be explicitly used in the sequel.

Double cosets: We might as well consider a slightly more general situation,

namely let � � �(1) be any �nite index subgroup (a modular group), and let �

be the set of integer matrices of positive determinant.

We need a technical lemma that will be used in the next section. Namely,

for � 2 �, write �

�

:= �

�1

��; observe that �

�

still has �nite index in �(1),

hence �

�

:= � \ �

�

has �nite index in �(1) (in particular, � and �

�

are com-

mensurable as subgroups of �(1)).

Lemma 1 If � =

`

k

i=1

�

�

�

i

, then ��� =

`

k

i=1

���

i

. In particular, the second

decomposition has only �nitely many right cosets.

See p. 75 of [Milne] for the (easy) proof.

We can now de�ne an abstract ring of \Hecke operators" as follows: let H(�;�)

be the free abelian group on the set of double cosets f���j� 2 �g. We de�ne

a multiplication operation on H(�;�) as follows: write ��� =

`

��

i

; ��� =

`

�

i

; then

(���):(���) =

X

c

[
]

�;�

�
�

where we sum over the double cosets �
� with �
� � ����� and put

c

[
]

�;�

= #f(i; j)j��

i

�

j

= �
g (observe that Lemma 1 implies that all the above

coset decompositions are �nite.) We call H(�;�) the Hecke algebra.

Now take � = �

0

(N); n = p (with (p;N) = 1). We have the identityM(p;N) =

�

0

(N)

�

1 0

0 p

�

�

0

(N). Thus the Hecke operator T (p) corresponds to the el-

ement �

0

(N)

�

1 0

0 p

�

�

0

(N) of the Hecke algebra, via switching from double

cosets to right cosets. (NB: in general, M(n;N) is not itself a double coset but

rather a �nite union of double cosets, and in this case T (n) corresponds to the

element

P

�

0

(N)�

i

�

0

(N), where M(n;N) =

`

�

0

(N)�

i

�

0

(N).)

2 Algebraic correspondences on curves

Let X;X

0

be nonsingular projective curves over an algebraically closed �eld k.

A correspondence T from X to X

0

is a pair X

�

 Y

�

! X

0

, where Y is a nonsin-

gular projective curve and �; � are �nite morphisms. There is an induced map

���

�

: Div Y ! DivX , where �

�

is the usual pullback of divisors. Observe that

if � has degree n, then �

�

multiplies the degree by n, whereas � has degree 1 as

a map on divisor groups, so that the composite map � ��

�

multiplies degrees by

n; in particular it is well-de�ned as a map from Div

0

X ! Div

0

X

0

. Moreover,
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it can be shown that � ��

�

preserves principal divisors and hence induces a map

on Jacobian varieties J(� � �

�

) : J(X) ! J(X

0

). In particular, when X = X

0

(as will be the case for us), a correspondence on X induces an endomorphism on

J(X), and we have the ring of correspondences, A(X ) embedded as a subring of

End(J(X)). Here are some examples of correspondences: if T = X

�

 Y

�

! X is

a correspondence onX , we can consider T

0

= X

�

 Y

�

! X

0

,the dual correspon-

dence. Or, let f : X ! X be a morphism. Then f induces a correspondence

by taking Y to be the graph of f , and taking T =X

�

 Y

f

! X

0

. Then the

correspondence, which we also denote by f , has degree 1 and indeed is just f

acting on DivX .

Hecke Correspondences: Let � be a modular group and � 2 � giving a Hecke

operator ��� 2 H(�;�). Then ��� induces a correspondence on the modular

curve �nH

�

by �nH

�

�

 �

�

nH

�

�

! �nH

�

, where � is just the quotient map and �

acts by �

�

z 7! ��z { this is well-de�ned by Lemma 1. The induced map ���

�

on

Div(�nH

�

) is the usual Hecke operator correspondence: writing � =

`

�

�

�

i

; we

get �z 7!

P

�

�

�

i

z 7!

P

���

i

z, which corresponds to the double-to-right coset

decomposition ��� =

`

���

i

by Lemma 1. In particular, taking X = X

0

(N),

� =

�

1 0

0 p

�

, we recover the Hecke operator T (p) of the previous section as an

algebraic correspondence T (p) : Div(X

0

(N)) ! Div(X

0

(N)). More precisely,

viewing Y

0

(N)(Q) as the moduli variety for E

0;N

(Q), the correspondence T (p)

acts on the free abelian group generated by the set of pairs (j(E); j(E

0

)), with

� : E ! E

0

a cyclic N -isogeny as the matrices in the right-coset decomposition

would act on representative lattices �;�

0

. Indeed we can view this more instrin-

sically in terms of the elliptic curves as follows: let S

0

; : : : ; S

p

be an enumeration

of the p+ 1 p-torsion subgroups of E. Then

T (p) : (j(E); j(E

0

))!

p

X

i=0

(j(E=S

i

); j(E

0

=�(S

i

)):

This is not hard to see: the only subtlety is that the elliptic curves E=S

i

are

order p quotients of E, so the corresponding lattices are index p overlattices

of the lattice � of E, whereas in the de�nition of the Hecke correspondence

we should be summing over index p, sublattices. But multiplication by p is a

homothety that carries the one set of lattices into the other and preserves the

j-invariants.

3 Reduction of X

0

(N) modulo p

We want to view the Eichler-Shimura \congruence relation" as an equality of

algebraic correspondences; necessarily these correspondences must live in the

reduced variety

~

X

0

(N) de�ned over F

p

. Unfortunately the general notion of

reducing a variety de�ned over a global �eld modulo a prime of that �eld is a

3



sticky one: one needs only to re
ect on the de�nition of reduction of an elliptic

curve to see how poorly it will generalize to arbitrary varieties: reduction of

an elliptic curve proceeds by choosing a Weierstrass equation with discriminant

� of minimal valuation wih respect to the given prime, and then we literally

reduce the equation coe�cientwise. Then, one is able to check that any two

minimal Weierstrass equations are related by a change of variables of a special

form, such that the reduction of the change of variables survives to give an

isomorphism between the reductions of the minimal Weierstrass equations. This

is not possible for curves of higher genus. Thus we are forced into a more ad

hoc approach: we work with the particular birational model of X

0

(N) over

Q given by the modular polynomial F

N

(X;Y ) = 0. The reduction process is

made easier in this special case by clinging to the interpretation of X

0

(N) as

the moduli variety for the moduli problem E

0;N

. There is the following result:

Theorem 2 Let C be the (singular) Q-projective curve de�ned by F

N

(X;Y; Z) =

0. Since F

N

has integer coe�cients we can reduce them modulo p to get an F

p

-

projective curve C

p

. Let C

n

p

be its normalization. The following are equivalent.

a) C

n

p

is irreducible and has the same genus as that of C.

b) C

n

p

is the projective completion of the moduli variety for E

0;N

(F

p

).

c) p does not divide N .

Under these conditions, we say that X

0

(N) has good reduction at p and write

~

X

0

(N) for C

n

p

. The theorem implies that, birationally, we can view

~

X

0

(N) as

the set of pairs (j(

~

E); j(

~

E

0

)), where

~

E and

~

E

0

are cyclic-N -isogenous elliptic

curves over F

p

.

4 The Eichler-Shimura Congruence

Consider

~

X

0

(N)(F

p

). The p-power Frobenius map induces a correspondence on

~

X

0

(N) which we denote Fr

p

; let Fr

0

p

denote its dual correspondence. We also

have T (p) as a correspondence on X

0

(N)(Q

p

) (a Lefschetz principle argument

shows that for any �eld k of characteristic 0, X

0

(N)(k) is the moduli variety for

E

0;N

(k)). The morphisms de�ning T (p) are a priori de�ned over some number

�eld K (hence a fortiori over its completion); in fact (see [Knapp]), they can be

shown to be de�ned over Q. We can then try to de�ne a correspondence

~

T (p)

on

~

X

0

(N) by reducing T (p). We have the following result:

Theorem 3 (Eichler-Shimura Congruence):

~

T (p) is a well-de�ned algebraic

correspondence and

~

T (p) = Fr

p

+Fr

0

p

as algebraic correspondences on

~

X

0

(N)

(e.g. as endomorphisms of the Jacobian variety J(

~

X

0

(N)).

Proof: If we can show that

~

T (p)(

~

P ) when de�ned using a particular lifting

to P 2 X

0

(N) equals Fr

p

(

~

P ) + Fr

0

p

(

~

P ), then visibly the choice of lift didn't

matter, so

~

T (p) is well-de�ned on Div(

~

X

0

(N)). Moreover, viewing

~

T (p) and

Fr

p

+Fr

0

p

as maps

~

X

0

(N)! J(

~

X

0

(N)), it's enough to show that they agree for
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all but �nitely many points

~

P , for then, as rational maps from a nonsingular

curve into a projective variety, they extend uniquely to morphisms on all of

~

X

0

(N). Thus, it's enough to consider points

~

P of the form (j(

~

E); j(

~

E

0

)), with

~� :

~

E !

~

E

0

a cyclic-N -isogeny. Moreover, recall that a supersingular elliptic

curve

~

E must have j-invariant in F

p

2

, so there are only �nitely many such curves

and we may throw them out, thus assuming that our point

~

P is represented

by a pair of elliptic curves with #

~

E[p] = p. Lift ~� to some � : E ! E

0

in characteristic zero. Then E[p](Q

p

) !

~

E[p](F

p

) has order p kernel. On

the other hand, we can write T

p

(P ) = T

p

(j(E); j(E

0

)) =

P

p

i=0

(j(E

i

); j(E

0

i

))

where S

0

; : : : ; S

p

is an enumeration of the order p torsion subgroups of E and

E

i

= E=S

i

; E

0

i

= E

0

=�(S

i

). We may assume that S

0

is the kernel of reduction,

so that for all i > 0, S

i

reduces to the unique p-torsion subgroup of

~

E. We have

~

T (p)(

~

P ) =

P

p

i=0

(j(

e

E=

~

S

i

); j(

f

E

0

=

g

�S

i

)).

Case 1: i = 0. Then the reduction of E ! E=S

0

is purely inseparable of degree

p, hence

^

E=S

0

�

=

~

E

(p)

, i.e. (j(

~

E

0

); j(

~

E

0

0

)) = Fr

p

(

~

P ).

Case 2: i > 0. Then

~

S

i

survives to give an order p kernel, i.e.

~

E !

~

E=

~

S

i

is

separable. Thus we can factor [p] through it to get

~

E !

~

E=

~

S

i

 

!

~

E; it must

then be that  is purely inseparable of degree p, i.e.

~

E

�

=

(

~

E=

~

S

i

)

(p)

, so

Fr

0

p

(

~

P ) = p:(j(

~

E=

~

S

i

); j(

~

E

0

=

~

S

0

i

)) =

p

X

i=1

(j(

~

E=

~

S

i

); j(

~

E

0

=

~

S

0

i

)):

Therefore

~

T (p)(

~

P ) =

P

p

i=0

(j(

~

E=

~

S

i

); j(

~

E

0

=

~

S

0

i

)) =

(j(

^

E=S

0

); j(

^

E

0

=S

0

0

)) + p:(j(

~

E=

~

S

1

); j(

~

E

0

=

~

S

0

1

)) = Fr

p

(

~

P ) + Fr

0

p

(

~

P ):

5 Modular Parameterizations of Elliptic Curves

Let E be an elliptic curved de�ned over Q. Recall that a modular parameteri-

zation of level N is a �nite Q-rational morphism F : X

0

(N) ! E. A modular

parameterization is minimal if there is no modular parameterization of level

M for any M < N . (Note that there are always nonminimal parameteriza-

tions, obtained by composing F with the natural map X

0

(NN

0

) ! X

0

(N).)

Note also that being modular of level N is an isogeny invariant for E. A famous

and recent theorem (Taniyama-Shimura-Weil-Taylor-Wiles-Conrad-Diamond...)

implies that every elliptic curve over Q is modular. Observe that if we have a

modular parameterization F : X

0

(N) ! E, an invariant di�erential ! on E

pulls back to F

�

(!), which we can take to be a weight 2 cusp form with integral

coe�cients (and other nice properties { it is a weak eigenform for the Hecke

operators) on X

0

(N). The Eichler-Shimura construction shows how to run this

process in the other direction.
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Theorem 4 (Eichler-Shimura Construction) Let f(�) =

P

1

n=1

a

n

q

n

be a weight

2 cusp form for �

0

(N) which has a

1

= 1 and all a

n

integers. Assume moreover

that f is a strong eigenform (i.e. for all Hecke operators T (n) { even those for

which (n;N) > 1 { we have T (n)f = a

n

f).

a) There is a pair (E; �), where E=Q is an elliptic curve and : J(X

0

(N)) ! E

exhibits E as the quotient by a codimension one Q-rational abelian subvariety

A.

b) All the Hecke correspondences T (n), viewed as endomorphisms of J(X

0

(N)),

stabilize A and act on the quotient E via multiplication by a

n

. These two prop-

erties characterize (E; v) up to Q-isomorphism.

c) The invariant di�erential ! on E pulls back to a scalar multiple of f viewed

as a holomorphic di�erential on X

0

(N).

d) (Igusa) The L-functions of E and f coincide as Euler products prime-by-

prime, except possibly at primes p dividing N .

We do not have time to discuss the proof; see [Knapp, Ch. XI] and [Milne].

Note that we can conclude from d) that for primes l not dividing N , the Fourier

coe�cient a

l

is the same as the elliptic curve's a

l

, i.e. the trace of Frobenius

acting on

~

E(F

l

), and hence T (l) acts on E by multiplication by a

l

. This will be

used in the next section.

To give some intuition for this result, we remark that the subvariety A is de-

�ned as the intersection of the kernels of the endomorphisms T (n)� a

n

(which

elucidates part b) at least). Moreover, we can see E as an elliptic curve over C

as follows: �x any �

0

2 H and de�ne �

f

= f

R


(�

0

)

�

0

f(�)d� j 
 2 �

0

(N)g; then

�

f

turns out to be a lattice in C with E(C )

�

=

C =�

f

.

To understand how the Eichler-Shimura construction applies to minimal modu-

lar parameterizations, we need the notion of a newform, which we will not (alas)

pause to motivate. An oldform on �

0

(N) is a weak eigenform { i.e. a simulta-

neous eigenvector those Hecke operators T (n) with (n;N) = 1 { in S

2k

(�

0

(N))

coming trivially from an eigenform of lower level: precisely, if r

1

r

2

=N and f is

a weak eigenform for �

0

(

N

r

1

r

2

), then f(r

2

�) is an oldform on �

0

(N). A new-

form is a weak eigenform in the orthogonal complement of the oldforms. The

Atkin-Lehner theorem implies that every newform is a strong eigenform, hence

a weight two newform is a candidate for the Eichler-Shimura construction.

Theorem 5 (Carayol) Let f 2 S

2

(�

0

(N)) be a newform with a

1

= 1 and a

n

integers, and let E=Q be the elliptic curve associated to f by the Eichler-Shimura

construction. Then L(s; E) = L(s; f); indeed, as Euler products their Euler

factors agree prime-by-prime. In particular, we can read o� the bad reduction

primes as being precisely those dividing N .

Corollary 6 Let F : X

0

(N) ! E be a modular paramaterization. The follow-

ing are equivalent.
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a) F is a minimal modular parameterization.

b) F factors as the Eichler-Shimura parameterization associated to a newform

f followed by a Q-isogeny of elliptic curves.

c) E has conductor N .

6 Veri�cation of the axioms for the Heegner Point

Euler System

Recall from [Ghitza] that we have de�ned for any n coprime to N a Heegner

point on X

0

(N)(K

n

); morally, a Heegner point of X

0

(N) is a point represented

as (j(E); j(E

0

)), where E;E

0

are cyclic-N -isogenous elliptic curves with CM

by the same order of a quadratic imaginary �eld, in this case by O

n

. Our

Heegner points are chosen to be compatible with each other (in a way that we

will shortly make precise), so explicitly we take x

n

= (j(C =O

n

); j(C =N

�1

n

)) =

(j(E

n

); j(E

0

n

)). Then we have the following key lemma:

Lemma 7 We have Tr

l

x

n

= T (l)x

m

as divisors on X

0

(N)(K

m

).

Proof: Consider the exact sequence 1 ! G

l

! G

n

! G

m

! 1. The action

of PicO

n

on the set of O

n

-CM elliptic curves by [a] � C =� := C =a� is simply

transitive, and by making � 2 G(K

n

=K) correspond to [a] 2 PicO

n

via

[a] �E = E

�

, we obtain a group isomorphism G(K

n

=K)

�

=

PicO

n

. (We remark

that this is the composition of the usual isomorphism with inversion.) Now if

� 2 G

l

, � determines an element of PicO

n

which becomes trivial when pushed

forward to PicO

m

; in terms of the fractional ideal a

�

, this means a

�

O

m

=

�O

m

, with � 2 K

�

; by adjusting a within its class, we may assume that

a

�

O

m

= O

m

, so in particular a

�

� O

m

. Then [O

m

: a

�

] = [O

m

a

�

: O

m

] = l;

the latter equality is valid for any invertible O

n

-submodule of K. Using the

above expression for the Heegner point x

n

, this shows that the �rst coordinates

of Tr

l

x

n

are

P

�2G

l

j(E

n

)

�

=

P

�2G

l

j(C =a

�

) and that C =a

�

is an order p

overlattice of C=O

m

, so by the discussion at the end of Section 2 we have

equality of �rst coordinates in the divisors T (l)x

m

and Tr

l

x

n

. But now writing

Tr

l

x

n

=

P

(j(C =O

n

); j(C =N

�1

n

)), observe that since C =N

�1

n

is also an O

n

-

CM curve, the Galois action is still given by multiplication by the ideal a

�

:

Tr

l

x

n

=

P

(

j(C =a

�

); j(C =N

�1

n

a

�

)); it follows that since each kernel of the

N -isogeny linking the respective j-invariants, namely N

�1

n

a

�

=a

�

, surjects onto

N

�1

m

=O

m

, the second coordinates of the divisors match as well.

Proposition 8 (Gross' 3.7) Recall y

n

= �(x

n

), where � : X

0

(N) ! E is our

modular parameterization. Then

a) Tr

l

y

n

= a

l

y

m

in E(K

m

).

b) Each prime factor �

m

of l in K

m

lies under a unique prime �

n

of K

n

, and

y

n

� Frob(�

m

=l)(y

m

) (�

n

):

Proof: a) We have Tr

l

x

n

= T (l)x

m

. Apply � to both sides, noting as we

7



have that the Hecke operators T (l) act as the L-series coe�cients a

l

; the result

is then immediate.

b) Observe that the prime � (the unique prime lying over l in K) is principal

and generated by an integer l prime to the conductor m, i.e. it lies in the

kernel of the Artin map for K

m

=K and thus splits completely in K

m

. On the

other hand, the factors �

m

of � in K

m

are totally rami�ed in K

n

{ indeed, the

l-ray class�eld is totally rami�ed over the Hilbert class�eld at l; and we have

�

m

= �

l+1

n

. In particular, the residue �eld F

�

n

equals the residue �eld F

�

; both

have l

2

elements. Again we exploit the identity T (l)x

m

= Tr

l

x

n

, by noting that

the total rami�cation at �

m

implies that Tr

l

x

n

=

P

�2G

l

x

�

n

� (l+1)x

n

(�

n

), i.e.

we have equality in the residue �eld. Note that Frob(�

m

=l) � Fr

l

(�

n

), whereas

Fr

l

itself has order 2 on the quadratic extension, F

�

=F

l

, i.e. is self-inverse. Thus

Eichler-Shimura for K

m

-valued divisors reads T (l) � (l+1)Fr

l

(remember that

Fr

0

l

has order l as a correspondence). So we have

(l + 1)x

n

� Tr

l

x

n

� T (l)x

m

� (l + 1)Frob(�

m

=l)(x

m

)(�

n

)

whence we may certainly conclude x

n

� Frob(�

m

=l)(x

m

)(�

n

), and pushing

everything forward by �, we get the desired result.

7 Comments on References

The material of Section 1 on Hecke operators occurs in many places; our treat-

ment is taken from Knapp's Elliptic Curves (Chapter IX) and Milne's Mod-

ular Functions and Modular Forms (available on the web at www.jmilne.org).

Miyake'sModular Forms and Shimura's Introduction to the Arithmetic of Auto-

morphic Forms give more complete treatments, although Miyake is rather dry.

Sections 2 through 4 are taken from Milne's notes { in fact Alex Ghitza and I

have reproduced almost everything he has to say there about X

0

(N) as a moduli

variety and the Eichler-Shimura congruence. As for the material in Section 5,

Knapp has a leisurely, readable treatment of most of our Theorem 4, and his

discussion can be well-supplemented by Milne's notes (circa p. 110). Neither

of these sources gives a complete discussion on the subject, however { I for one

would like to know of a more comprehensive reference. Finally, Gross' paper

Heegner Points on X

0

(N) (cited in Gross' survey article) is a good reference for

the title topic.
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