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1. The Result

Let E be an elliptic curve de�ned over Q, and suppose its L-function has a

simple zero at s=1. Then the conjecture of Birch and Swinnerton-Dyer [B-S-D]

predicts that E should have rank 1. Gross and Zagier [G-Z] were able to prove

that E has rank at least 1, by proving the result �rst over imaginary quadratic

�elds K with the property that the conductor N of E splits in K, and then using

existing theorems to apply their results to Q. Explicitly, they did this by showing

that a certain point y

K

on E over K, constructed by Birch and dubbed a Heegner

point [Bi], satis�es a formula giving its canonical height as a non-zero multiple of

L

0

(E=K; 1). Thus, when the zero is simple, the canonical height of y

K

is non-zero,

so E has rank at least one over K.

Using certain special properties of Heegner points, Kolyvagin was then able to

apply his theory of Euler systems to extend these results rather dramatically. In

particular, he proved that when L(E=K; s) has a simple zero at s = 1, that in fact

E has rank exactly 1, and furthermore, X(E=K) is �nite [Ko]. Benedict Gross'

paper Kolyvagin's work on modular elliptic curves [Gr], which will be the focus of

this seminar, gives an exposition of Kolyvagin's proof of a large part of this result,

namely:

Theorem 1. If E does not have complex multiplication, let p be an odd prime not

dividing y

K

on E(K), and suppose further that the extension Q(E[p]) is as large as

possible (i.e., has Galois group GL

2

(Z=pZ) over Q). Then E has rank 1, and the

p-part of X(E=K) is trivial.

Note that thanks to the exact sequence

0! E(K)=pE(K)! Sel

p

(E=K)!X(E=K)[p]! 0

we can apply Gross-Zagier, which tells us that E(K)=pE(K) is at least Z=pZ, to

conclude that to prove the theorem it su�ces to show that Sel

p

(E=K) = Z=pZ.

Thus, this Selmer group calculation will be the focus of the seminar.

2. Heegner Point Background

Clearly, a good familiarity with elliptic curve theory and algebraic number theory

will be necessary to even understand the statement of the results. Beyond this,

there are speci�c topics that will be important, such as knowledge of some of the

basic statements of class �eld theory, and the actions of Frobenius automorphisms

and complex conjugation on torsion points of elliptic curves. These topics will be

handled on a case by case basis, although it is safe to assume that at least some

will be have to be presupposed.
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However, to even start on Kolyvagin's Euler system construction, it is necessary

to understand Heegner points. De�ning Heegner points is quite simple, but showing

that they are de�ned over the right �eld requires some work. The main prerequisite

for this is the theory of complex multiplication, which develops the theory of lattices

in C which are closed under multiplication by some complex number, and therefore

said to have complex multiplication. This is then applied to relate values of certain

modular functions at imaginary quadratic values to a collection of class �elds of

imaginary quadratic extensions of Q (called ring class �elds). Given this theory,

if E is an elliptic curve of conductor N , it has a Weil parametrization by X

0

(N),

and the Heegner point y

K

can be constructed rather easily: let x

1

be the point on

Y

0

(N) = H=�

0

(N) determined by an appropriate generator of O

K

� C , and y

1

the

image of x

1

on E under the parametrization map, then y

K

is the trace of the Galois

conjugates of y

1

. The theory of complex multiplication is needed for showing that

x

1

, given an appropriate algebraic model of X

0

(N), is de�ned over the Hilbert class

�eld of K; it follows that y

1

is de�ned over the same �eld, giving a very explicit

Galois group over which to take the trace.

To construct his Euler system, Kolyvagin tinkers with the notion of a Heegner

point to take a system of points y

n

, not just de�ned over the Hilbert class �eld

of K, but also over a collection of ring class �elds of K. In order to prove the

Euler system axioms, which give relations between y

n

and y

m

where n = lm for

l prime, theory of a slightly di�erent avor is involved. Here, it is necessary to

understand the basic techniques for manipulating modular elliptic curves. Thus,

a knowledge of the theory of modular curves and modular forms, including the

Hecke correspondence and Hecke operators, is prerequisite. The Eichler-Shimura

congruence relation also plays a key role here.

3. The Euler System Argument

Having produced a system of points satisfying the axioms of an Euler system,

Kolyvagin proceeds to apply the usual Euler system argument to bound the size of

Sel

p

(E=K). Basic Galois cohomology is prevalent throughout the argument. The

�rst step is to use the y

n

to produce various global Galois cohomology classes,

including d(n) 2 H

1

(K;E)[p], all with reasonably concrete conditions for them to

be trivial.

Next, everything is re�ned by decomposing the relevant cohomology groups into

eigenspaces for complex conjugation. Conditions are given for the d(n) to be lo-

cally trivial. Tate Local Duality is used to set up a local nondegenerate pairing

h; i between E(K

�

)=pE(K

�

) and H

1

(K

�

; E)[p], which can also be decomposed by

eigenspaces. Setting this pairing up involves some more technical cohomology re-

sults which may or may not require the introduction of cohomology theories beyond

Galois cohomology to really understand. The pairing is then applied to show that

if one can produce an appropriate cohomology class (suggestively called d) locally

trivial everywhere except at �, then any element of the Selmer group is locally

trivial at �. The proof of this also makes central use of the result from global class

�eld theory that the sum of local invariants is zero.

Finally, some concrete work with the Selmer group relates both local and global

triviality of its elements to statements about the vanishing of certain pairings [; ],

so the basic strategy to complete the proof is to use the Chebotarev Density The-

orem to produce primes l for which the cohomology classes d(l) are locally trivial
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everywhere except at one place, which by the earlier result forces the Selmer group

to be locally trivial; then via the concrete work with the pairings [; ], this may be

translated into the �nal desired global bounds on the Selmer group.

4. Summary of Background

These are the background topics required for Gross' paper, listed roughly in

order of how likely they are to be left as prerequisites for the seminar:

� Some algebraic number theory

� Some elliptic curve theory

� Some Galois cohomology

� Basic statements of local and global class �eld theory

� Theory of complex multiplication

� Basic theory of modularity of elliptic curves

� More sophisticated cohomologies (may be avoidable)

Many of these topics function well as black boxes, so if we don't have time

to cover all topics we don't already know, we should still have minimal trouble

understanding the ow of the argument. For instance, we will certainly take the

work of Gross and Zagier as a very important black box.
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