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The Characteristic Polynomial of the Frobenius. The main tool in computing the
characteristic polynomials of Galois actions on torsion points is the Weil pairing. If F is an
elliptic curve over an arbitrary field K, and m is an integer relatively prime to char(K), then
there is a pairing

h

em : E[m] x E[m| — p,,, = m™ roots of unity in K

having the following properties:

i. It is bilinear in both variables;

ii. It is alternating: e, (T,T) = 1;

iii. It is nondegenerate: if e,,(S,7) = 1 for all S € E[m], then T = O;

iv. It is Galois invariant: e,,(S,T)7 = €,,(S°,T7) for all 0 € Gal(K/K);

v. If ¢ : B, — E5 is an isogeny with dual <$: Ey; — Ey, and S € E [m|,T € Ey[m] then:

en(S,6(1)) = em(9(5), T)-
To illustrate the use of the Weil pairing, we prove the following:

Lemma 1 Let E be an elliptic curve over a field K, let ¢ : E — E be an isogeny, and let p
be a prime integer not equal to the characteristic of K. Then the determinant of ¢ viewed
as a linear transformation on Elp| ~ Z/pZ X Z/pZ satisfies:

det(¢) = deg(¢) mod p

Proof: Let vy, vs be a basis of E[p| and let
a b
c d

be the matrix of ¢ with respect to this basis. Using the Weil pairing e, : E[p] — E[p] we
compute e,(P(v1), ¢(ve)) in two ways:

€ My(Z/pZ)

6p(¢(01); P(v2)) = ep(fw1 + cvg, buy + dvy) = ep(Ub Uz)adfbc

*Reference: [AEC] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986




On the other hand, using the fact that b = pp = [deg(¢)] where ¢ is the dual isogeny, we
can write:

ep(P(v1), p(va)) = ep(vy, QA5¢02) = ep(v1, Uz)deg¢

But e, (v, v2) # 1 because the Weil pairing is nondegenerate, and the two expressions above
show that det(¢) = deg(¢) mod p. /

Now let E be an elliptic curve over a number field K, and let L be a Galois extension of
K containing E[p|, where p is a fixed prime. Let A be an unramified prime of K and let
o € Gal(L/K) be the Frobenius substitution corresponding to a prime £ of L above A\. We
assume that E has good reduction over the local field K, and that the characteristic of the
residue field of K is [ # p. We use lemma 1 to compute the characteristic polynomial of o
acting on E[p]:

Proposition 1 With the above hypothesis, the characteristic polynomial of the Frobenius
substitution o acting on E[E] is 1% — ayx + q, where q is the the order of the residue field k
of Ky, and ay =1+ q — #E(k).

Proof: Fixing an embedding K C K, we view o as an element of Gal(L¢/K)). Since E has
good reduction over K and E[p| C Lg, the reduction map gives an injection

Ep| — E(K)

where %' is the residue fields of Lg. Since the reduction of o is the ¢ power Frobenius
automorphism o, of £'/k, it follows that the characteristic polynomial of o acting on E[p] is
the same as the characteristic polynomial of o, acting on E [p]. The later is easier to compute
since oy : E — Eis an isogeny of degree q.

Indeed, lemma 1 immediately gives us:

det(o,) = ¢ mod p.

To find the trace of o, we use the formula Tr(A) = 1+ det(A) — det( — A), which holds for
every 2 by 2 matrix A. We have to compute det(I — 0,). Using again the lemma, we find
that det(I — o,) = deg(/ — 04) mod p. But the isogeny I — o, is separable [AEC Ch. III,
Cor. 5.5], therefore deg(I — 0,) = # ker(I — 0,) [AEC, Ch. III, Th. 4.10]. Finally

#ker(I — o) = #{P c E:0,(P)=P}=#E(k)

where for the last equality we use the fact that o, is the topological generator of Gal(k/k).
It follows that _
Tr(og) =14 q — #E(k) = ax.

Hence the characteristic polinomyal of o, is 2* — axz + ¢ € (Z/pZ)[z], which is also the
characteristic polynomial of o as observed above.

The characteristic polynomial of complex conjugation. Let E be an elliptic curve
over Q. Fixing an embedding Q — C, it makes sense to talk about the action of the complex
conjugation 7 on E[p|, for a prime p. Assuming p > 2 we show that the characteristic
polynomial of 7 is #? — 1. Indeed, it is enough to show that the minimal polynomial is not
r+1lorax—1.



Assuming by contradiction either of these holds, we see that for any P, P, € E|[P)|
ep(P1, P2)" =€y (P[, P}) = (£ P, £P)) = €, (P1, P))

because e,(Pi, P,) = e,(—P1. — ). It follows that e,(Py, ) = 1, which contradicts the
nondegeneracy of the Weil pairing.

Therefore the characteristic polynomial of 7 is 22 — 1 as desired.

Application to our objects of interest. First we recall the setting. Let E be an
elliptic curve over QQ of conductor NV and let K be an imaginary quadratic extension of Q of
discriminant —D, in which all the prime factors of NV are split. Let p be an odd prime and
n an odd square free integer coprime to N Dp.

Let L = K(FE]p]), which is a Galois extension of Q. Note that the extension K (FE[p])/K
is unramified outside the primes of K not dividing pN:'if A is a prime of K, not dividing
pN, then E has good reduction over the local field K, the completion of K at A. Fixing
an embedding K < K, it is enough to show that the extension of local fields Ky (E[p])/Ky
is unramified. But since the reduced curve E /k is nonsingular, the reduction map gives an
injection E[p] < E(k'), where k', k are the residue fields of K, (E[p]), Ky respectively. This
shows that the inertia group of K,(E[p])/K fixes all the elements of E[p|, as it fixes their
images in E(k'). So the inertia group is trivial, that is K,(E[p])/Ky is unramified, that is \
is unramified in L/K.

Let [ be a prime factor of n. It follows that [ is unramified in L = K(E[p]). We further
assume that the conjugacy class Frob(l) C Gal(L/Q) contains the complex conjugation 7.
By Cebotarev’s density theorem there are an infinite number of primes [ with this property.

The assumption on Frob(l) implies that the prime [ is inert in K (it is unramified and
the residue field extension has degree 2); denote by A its prime factor and by Fj, F\ the
corresponding residue fields. Note that the residue field of L at a prime above A is again F).

By the computation in the first section, the characteristic polynomial of Frob(l) acting
on E[p] is #2 — iz + I, where a; = | + 1 — #E(F)). From the equality of the characteristic
polynomials of Frob(l) and 7 for the extension Q(E|[p])/Q, it follows that

[4+1=a=0mod p.

Looking now at the extension L/Q, note that 7 € Frob(l) implies that the reduction 7 of
7 modulo a prime £ of L above [ is well-defined; moreover 7 = o, the [-power Frobenius
automorphism. Denoting by E(Fy)* the +1 eigenspaces of 7 = o, acting on E(F)), we can
compute their orders as follows:

HE(F\)T = #{PcEF)):P"=P}=#EF)=1+1-q
#E(F\)~ = #{Pc E(F\): P =0} = #ker(1 + 0;) = deg(1l + o) =
= det(1+0y) =1+ Tr(oy) +det(oy) =1+ a; + [ mod p
(we have used the fact that 1+ o0y is separable together with Lemma 1). Since both [+1+gq,

are divisible by p and #E(F)\)* # 0, it follows that E[p|* ~ Z/pZ (the p-torsion of E is
contained in E(F)) because of the injectivity of the reduction map E[p] — E(F))).

! Another way of saying this: if E is an elliptic curve with good reduction over a local field F', then the
Gp/p module E[m] is unramified for all m relatively prime to the characteristic of the residue field of ¥
[AEC, Ch. 7, Prop. 4.1].



