Galois action on torsion points of elliptic curves^{*}

Alexandru-Anton Popa

March 10, 2000

The Characteristic Polynomial of the Frobenius. The main tool in computing the characteristic polynomials of Galois actions on torsion points is the Weil pairing. If E is an elliptic curve over an arbitrary field K, and m is an integer relatively prime to char(K), then there is a pairing

 $e_m: E[m] \times E[m] \longrightarrow \mu_m = m^{th}$ roots of unity in K

having the following properties:

i. It is bilinear in both variables;

ii. It is alternating: $e_m(T,T) = 1$;

iii. It is nondegenerate: if $e_m(S,T) = 1$ for all $S \in E[m]$, then T = O;

iv. It is Galois invariant: $e_m(S,T)^{\sigma} = e_m(S^{\sigma},T^{\sigma})$ for all $\sigma \in \text{Gal}(\bar{K}/K)$;

v. If $\phi: E_1 \to E_2$ is an isogeny with dual $\hat{\phi}: E_2 \to E_1$, and $S \in E_1[m], T \in E_2[m]$ then:

$$e_m(S,\hat{\phi}(T)) = e_m(\phi(S),T)$$

To illustrate the use of the Weil pairing, we prove the following:

Lemma 1 Let E be an elliptic curve over a field K, let $\phi : E \to E$ be an isogeny, and let p be a prime integer not equal to the characteristic of K. Then the determinant of ϕ viewed as a linear transformation on $E[p] \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ satisfies:

$$\det(\phi) \equiv \deg(\phi) \bmod p$$

Proof: Let v_1, v_2 be a basis of E[p] and let

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{Z}/p\mathbb{Z})$$

be the matrix of ϕ with respect to this basis. Using the Weil pairing $e_p : E[p] \to E[p]$ we compute $e_p(\phi(v_1), \phi(v_2))$ in two ways:

$$e_p(\phi(v_1), \phi(v_2)) = e_p(av_1 + cv_2, bv_1 + dv_2) = e_p(v_1, v_2)^{ad-bc}$$

^{*}Reference: [AEC] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986

On the other hand, using the fact that $\phi \hat{\phi} = \hat{\phi} \phi = [deg(\phi)]$ where $\hat{\phi}$ is the dual isogeny, we can write:

$$e_p(\phi(v_1), \phi(v_2)) = e_p(v_1, \hat{\phi}\phi v_2) = e_p(v_1, v_2)^{\deg \phi}$$

But $e_p(v_1, v_2) \neq 1$ because the Weil pairing is nondegenerate, and the two expressions above show that $\det(\phi) \equiv \deg(\phi) \mod p$.

Now let E be an elliptic curve over a number field K, and let L be a Galois extension of K containing E[p], where p is a fixed prime. Let λ be an unramified prime of K and let $\sigma \in \operatorname{Gal}(L/K)$ be the Frobenius substitution corresponding to a prime \mathfrak{L} of L above λ . We assume that E has good reduction over the local field K_{λ} , and that the characteristic of the residue field of K_{λ} is $l \neq p$. We use lemma 1 to compute the characteristic polynomial of σ acting on E[p]:

Proposition 1 With the above hypothesis, the characteristic polynomial of the Frobenius substitution σ acting on E[p] is $x^2 - a_{\lambda}x + q$, where q is the the order of the residue field k of K_{λ} , and $a_{\lambda} = 1 + q - \#\tilde{E}(k)$.

Proof: Fixing an embedding $\overline{K} \subset \overline{K}_{\lambda}$, we view σ as an element of $\operatorname{Gal}(L_{\mathfrak{L}}/K_{\lambda})$. Since E has good reduction over K_{λ} and $E[p] \subset L_{\mathfrak{L}}$, the reduction map gives an injection

$$E[p] \hookrightarrow \widetilde{E}(k')$$

where k' is the residue fields of $L_{\mathfrak{L}}$. Since the reduction of σ is the q^{th} power Frobenius automorphism σ_q of k'/k, it follows that the characteristic polynomial of σ acting on E[p] is the same as the characteristic polynomial of σ_q acting on $\tilde{E}[p]$. The later is easier to compute since $\sigma_q : \tilde{E} \to \tilde{E}$ is an isogeny of degree q.

Indeed, lemma 1 immediately gives us:

$$\det(\sigma_q) \equiv q \mod p.$$

To find the trace of σ_q we use the formula $\operatorname{Tr}(A) = 1 + \det(A) - \det(I - A)$, which holds for every 2 by 2 matrix A. We have to compute $\det(I - \sigma_q)$. Using again the lemma, we find that $\det(I - \sigma_q) \equiv \deg(I - \sigma_q) \mod p$. But the isogeny $I - \sigma_q$ is separable [AEC Ch. III, Cor. 5.5], therefore $\deg(I - \sigma_q) = \# \ker(I - \sigma_q)$ [AEC, Ch. III, Th. 4.10]. Finally

$$\# \ker(I - \sigma_q) = \# \{ P \in \tilde{E} : \sigma_q(P) = P \} = \# \tilde{E}(k)$$

where for the last equality we use the fact that σ_q is the topological generator of Gal(k/k). It follows that

$$\operatorname{Tr}(\sigma_q) = 1 + q - \# \tilde{E}(k) = a_{\lambda}.$$

Hence the characteristic polynomial of σ_q is $x^2 - a_\lambda x + q \in (\mathbb{Z}/p\mathbb{Z})[x]$, which is also the characteristic polynomial of σ as observed above.

The characteristic polynomial of complex conjugation. Let E be an elliptic curve over \mathbb{Q} . Fixing an embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$, it makes sense to talk about the action of the complex conjugation τ on E[p], for a prime p. Assuming p > 2 we show that the characteristic polynomial of τ is $x^2 - 1$. Indeed, it is enough to show that the minimal polynomial is not x + 1 or x - 1. Assuming by contradiction either of these holds, we see that for any $P_1, P_2 \in E[P]$

$$e_p(P_1, P_2)^{\tau} = e_p(P_1^{\tau}, P_2^{\tau}) = e_p(\pm P_1, \pm P_2) = e_p(P_1, P_2)$$

because $e_p(P_1, P_2) = e_p(-P_1, -P_2)$. It follows that $e_p(P_1, P_2) = 1$, which contradicts the nondegeneracy of the Weil pairing.

Therefore the characteristic polynomial of τ is $x^2 - 1$ as desired.

Application to our objects of interest. First we recall the setting. Let E be an elliptic curve over \mathbb{Q} of conductor N and let K be an imaginary quadratic extension of \mathbb{Q} of discriminant -D, in which all the prime factors of N are split. Let p be an odd prime and n an odd square free integer coprime to NDp.

Let L = K(E[p]), which is a Galois extension of \mathbb{Q} . Note that the extension K(E[p])/Kis unramified outside the primes of K not dividing pN:¹if λ is a prime of K, not dividing pN, then E has good reduction over the local field K_{λ} , the completion of K at λ . Fixing an embedding $\overline{K} \hookrightarrow \overline{K}_{\lambda}$, it is enough to show that the extension of local fields $K_{\lambda}(E[p])/K_{\lambda}$ is unramified. But since the reduced curve \widetilde{E}/k is nonsingular, the reduction map gives an injection $E[p] \hookrightarrow \widetilde{E}(k')$, where k', k are the residue fields of $K_{\lambda}(E[p]), K_{\lambda}$ respectively. This shows that the inertia group of $K_{\lambda}(E[p])/K_{\lambda}$ fixes all the elements of E[p], as it fixes their images in $\widetilde{E}(k')$. So the inertia group is trivial, that is $K_{\lambda}(E[p])/K_{\lambda}$ is unramified, that is λ is unramified in L/K.

Let l be a prime factor of n. It follows that l is unramified in L = K(E[p]). We further assume that the conjugacy class $\operatorname{Frob}(l) \subset \operatorname{Gal}(L/\mathbb{Q})$ contains the complex conjugation τ . By Cebotarev's density theorem there are an infinite number of primes l with this property.

The assumption on $\operatorname{Frob}(l)$ implies that the prime l is inert in K (it is unramified and the residue field extension has degree 2); denote by λ its prime factor and by F_l , F_{λ} the corresponding residue fields. Note that the residue field of L at a prime above λ is again F_{λ} .

By the computation in the first section, the characteristic polynomial of $\operatorname{Frob}(l)$ acting on E[p] is $x^2 - a_l x + l$, where $a_l = l + 1 - \# \tilde{E}(F_l)$. From the equality of the characteristic polynomials of $\operatorname{Frob}(l)$ and τ for the extension $\mathbb{Q}(E[p])/\mathbb{Q}$, it follows that

$$l+1 \equiv a_l \equiv 0 \bmod p.$$

Looking now at the extension L/\mathbb{Q} , note that $\tau \in \operatorname{Frob}(l)$ implies that the reduction $\tilde{\tau}$ of τ modulo a prime \mathfrak{L} of L above l is well-defined; moreover $\tilde{\tau} = \sigma_l$, the l-power Frobenius automorphism. Denoting by $\tilde{E}(F_{\lambda})^{\pm}$ the ± 1 eigenspaces of $\tilde{\tau} = \sigma_l$ acting on $\tilde{E}(F_{\lambda})$, we can compute their orders as follows:

$$\begin{aligned} #\widetilde{E}(F_{\lambda})^{+} &= \#\{P \in \widetilde{E}(F_{\lambda}) : P^{\sigma_{l}} = P\} = \#\widetilde{E}(F_{l}) = l + 1 - a_{l} \\ #\widetilde{E}(F_{\lambda})^{-} &= \#\{P \in \widetilde{E}(F_{\lambda}) : P^{\sigma_{l}+1} = O\} = \#\ker(1 + \sigma_{l}) = \deg(1 + \sigma_{l}) = \\ &\equiv \det(1 + \sigma_{l}) \equiv 1 + \operatorname{Tr}(\sigma_{l}) + \det(\sigma_{l}) \equiv 1 + a_{l} + l \mod p \end{aligned}$$

(we have used the fact that $1 + \sigma_l$ is separable together with Lemma 1). Since both $l + 1 \pm a_l$ are divisible by p and $\#\tilde{E}(F_{\lambda})^{\pm} \neq 0$, it follows that $\tilde{E}[p]^{\pm} \simeq \mathbb{Z}/p\mathbb{Z}$ (the p-torsion of \tilde{E} is contained in $\tilde{E}(F_{\lambda})$ because of the injectivity of the reduction map $E[p] \hookrightarrow \tilde{E}(F_{\lambda})$).

¹Another way of saying this: if E is an elliptic curve with good reduction over a local field F, then the $G_{\overline{F}/F}$ module E[m] is unramified for all m relatively prime to the characteristic of the residue field of F [AEC, Ch. 7, Prop. 4.1].