Galois action on torsion points of elliptic curves*

Alexandru-Anton Popa

March 10, 2000

The Characteristic Polynomial of the Frobenius. The main tool in computing the characteristic polynomials of Galois actions on torsion points is the Weil pairing. If E is an elliptic curve over an arbitrary field K, and m is an integer relatively prime to char (K), then there is a pairing

$$
e_{m}: E[m] \times E[m] \longrightarrow \mu_{m}=m^{t h} \text { roots of unity in } K
$$

having the following properties:
i. It is bilinear in both variables;
ii. It is alternating: $e_{m}(T, T)=1$;
iii. It is nondegenerate: if $e_{m}(S, T)=1$ for all $S \in E[m]$, then $T=O$;
iv. It is Galois invariant: $e_{m}(S, T)^{\sigma}=e_{m}\left(S^{\sigma}, T^{\sigma}\right)$ for all $\sigma \in \operatorname{Gal}(\bar{K} / K)$;
v. If $\phi: E_{1} \rightarrow E_{2}$ is an isogeny with dual $\widehat{\phi}: E_{2} \rightarrow E_{1}$, and $S \in E_{1}[m], T \in E_{2}[m]$ then:

$$
e_{m}(S, \widehat{\phi}(T))=e_{m}(\phi(S), T)
$$

To illustrate the use of the Weil pairing, we prove the following:
Lemma 1 Let E be an elliptic curve over a field K, let $\phi: E \rightarrow E$ be an isogeny, and let p be a prime integer not equal to the characteristic of K. Then the determinant of ϕ viewed as a linear transformation on $E[p] \simeq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ satisfies:

$$
\operatorname{det}(\phi) \equiv \operatorname{deg}(\phi) \bmod p
$$

Proof: Let v_{1}, v_{2} be a basis of $E[p]$ and let

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{M}_{2}(\mathbb{Z} / p \mathbb{Z})
$$

be the matrix of ϕ with respect to this basis. Using the Weil pairing $e_{p}: E[p] \rightarrow E[p]$ we compute $e_{p}\left(\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right)$ in two ways:

$$
e_{p}\left(\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right)=e_{p}\left(a v_{1}+c v_{2}, b v_{1}+d v_{2}\right)=e_{p}\left(v_{1}, v_{2}\right)^{a d-b c}
$$

[^0]On the other hand, using the fact that $\phi \hat{\phi}=\widehat{\phi} \phi=[\operatorname{deg}(\phi)]$ where $\hat{\phi}$ is the dual isogeny, we can write:

$$
e_{p}\left(\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right)=e_{p}\left(v_{1}, \widehat{\phi} \phi v_{2}\right)=e_{p}\left(v_{1}, v_{2}\right)^{\operatorname{deg} \phi}
$$

But $e_{p}\left(v_{1}, v_{2}\right) \neq 1$ because the Weil pairing is nondegenerate, and the two expressions above show that $\operatorname{det}(\phi) \equiv \operatorname{deg}(\phi) \bmod p . \sqrt{ }$

Now let E be an elliptic curve over a number field K, and let L be a Galois extension of K containing $E[p]$, where p is a fixed prime. Let λ be an unramified prime of K and let $\sigma \in \operatorname{Gal}(L / K)$ be the Frobenius substitution corresponding to a prime \mathfrak{L} of L above λ. We assume that E has good reduction over the local field K_{λ}, and that the characteristic of the residue field of K_{λ} is $l \neq p$. We use lemma 1 to compute the characteristic polynomial of σ acting on $E[p]$:

Proposition 1 With the above hypothesis, the characteristic polynomial of the Frobenius substitution σ acting on $E[p]$ is $x^{2}-a_{\lambda} x+q$, where q is the the order of the residue field k of K_{λ}, and $a_{\lambda}=1+q-\# \widetilde{E}(k)$.

Proof: Fixing an embedding $\bar{K} \subset \bar{K}_{\lambda}$, we view σ as an element of $\operatorname{Gal}\left(L_{\mathfrak{L}} / K_{\lambda}\right)$. Since E has good reduction over K_{λ} and $E[p] \subset L_{\mathcal{L}}$, the reduction map gives an injection

$$
E[p] \hookrightarrow \widetilde{E}\left(k^{\prime}\right)
$$

where k^{\prime} is the residue fields of $L_{\mathfrak{N}}$. Since the reduction of σ is the $q^{\text {th }}$ power Frobenius automorphism σ_{q} of k^{\prime} / k, it follows that the characteristic polynomial of σ acting on $E[p]$ is the same as the characteristic polynomial of σ_{q} acting on $\tilde{E}[p]$. The later is easier to compute since $\sigma_{q}: \widetilde{E} \rightarrow \widetilde{E}$ is an isogeny of degree q.

Indeed, lemma 1 immediately gives us:

$$
\operatorname{det}\left(\sigma_{q}\right) \equiv q \bmod p
$$

To find the trace of σ_{q} we use the formula $\operatorname{Tr}(A)=1+\operatorname{det}(A)-\operatorname{det}(I-A)$, which holds for every 2 by 2 matrix A. We have to compute $\operatorname{det}\left(I-\sigma_{q}\right)$. Using again the lemma, we find that $\operatorname{det}\left(I-\sigma_{q}\right) \equiv \operatorname{deg}\left(I-\sigma_{q}\right) \bmod p$. But the isogeny $I-\sigma_{q}$ is separable [AEC Ch. III, Cor. 5.5], therefore $\operatorname{deg}\left(I-\sigma_{q}\right)=\# \operatorname{ker}\left(I-\sigma_{q}\right)$ [AEC, Ch. III, Th. 4.10]. Finally

$$
\# \operatorname{ker}\left(I-\sigma_{q}\right)=\#\left\{P \in \widetilde{E}: \sigma_{q}(P)=P\right\}=\# \widetilde{E}(k)
$$

where for the last equality we use the fact that σ_{q} is the topological generator of $\operatorname{Gal}(\bar{k} / k)$. It follows that

$$
\operatorname{Tr}\left(\sigma_{q}\right)=1+q-\# \tilde{E}(k)=a_{\lambda} .
$$

Hence the characteristic polinomyal of σ_{q} is $x^{2}-a_{\lambda} x+q \in(\mathbb{Z} / p \mathbb{Z})[x]$, which is also the characteristic polynomial of σ as observed above.

The characteristic polynomial of complex conjugation. Let E be an elliptic curve over \mathbb{Q}. Fixing an embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$, it makes sense to talk about the action of the complex conjugation τ on $E[p]$, for a prime p. Assuming $p>2$ we show that the characteristic polynomial of τ is $x^{2}-1$. Indeed, it is enough to show that the minimal polynomial is not $x+1$ or $x-1$.

Assuming by contradiction either of these holds, we see that for any $P_{1}, P_{2} \in E[P]$

$$
e_{p}\left(P_{1}, P_{2}\right)^{\tau}=e_{p}\left(P_{1}^{\tau}, P_{2}^{\tau}\right)=e_{p}\left(\pm P_{1}, \pm P_{2}\right)=e_{p}\left(P_{1}, P_{2}\right)
$$

because $e_{p}\left(P_{1}, P_{2}\right)=e_{p}\left(-P_{1} .-P_{2}\right)$. It follows that $e_{p}\left(P_{1}, P_{2}\right)=1$, which contradicts the nondegeneracy of the Weil pairing.

Therefore the characteristic polynomial of τ is $x^{2}-1$ as desired.
Application to our objects of interest. First we recall the setting. Let E be an elliptic curve over \mathbb{Q} of conductor N and let K be an imaginary quadratic extension of \mathbb{Q} of discriminant $-D$, in which all the prime factors of N are split. Let p be an odd prime and n an odd square free integer coprime to $N D p$.

Let $L=K(E[p])$, which is a Galois extension of \mathbb{Q}. Note that the extension $K(E[p]) / K$ is unramified outside the primes of K not dividing $p N:^{1}$ if λ is a prime of K, not dividing $p N$, then E has good reduction over the local field K_{λ}, the completion of K at λ. Fixing an embedding $\bar{K} \hookrightarrow \bar{K}_{\lambda}$, it is enough to show that the extension of local fields $K_{\lambda}(E[p]) / K_{\lambda}$ is unramified. But since the reduced curve \widetilde{E} / k is nonsingular, the reduction map gives an injection $E[p] \hookrightarrow \widetilde{E}\left(k^{\prime}\right)$, where k^{\prime}, k are the residue fields of $K_{\lambda}(E[p]), K_{\lambda}$ respectively. This shows that the inertia group of $K_{\lambda}(E[p]) / K_{\lambda}$ fixes all the elements of $E[p]$, as it fixes their images in $\widetilde{E}\left(k^{\prime}\right)$. So the inertia group is trivial, that is $K_{\lambda}(E[p]) / K_{\lambda}$ is unramified, that is λ is unramified in L / K.

Let l be a prime factor of n. It follows that l is unramified in $L=K(E[p])$. We further assume that the conjugacy class $\operatorname{Frob}(l) \subset \operatorname{Gal}(L / \mathbb{Q})$ contains the complex conjugation τ. By Cebotarev's density theorem there are an infinite number of primes l with this property.

The assumption on $\operatorname{Frob}(l)$ implies that the prime l is inert in K (it is unramified and the residue field extension has degree 2); denote by λ its prime factor and by F_{l}, F_{λ} the corresponding residue fields. Note that the residue field of L at a prime above λ is again F_{λ}.

By the computation in the first section, the characteristic polynomial of $\operatorname{Frob}(l)$ acting on $E[p]$ is $x^{2}-a_{l} x+l$, where $a_{l}=l+1-\# \widetilde{E}\left(F_{l}\right)$. From the equality of the characteristic polynomials of $\operatorname{Frob}(l)$ and τ for the extension $\mathbb{Q}(E[p]) / \mathbb{Q}$, it follows that

$$
l+1 \equiv a_{l} \equiv 0 \bmod p
$$

Looking now at the extension L / \mathbb{Q}, note that $\tau \in \operatorname{Frob}(l)$ implies that the reduction $\widetilde{\tau}$ of τ modulo a prime \mathfrak{L} of L above l is well-defined; moreover $\widetilde{\tau}=\sigma_{l}$, the l-power Frobenius automorphism. Denoting by $\widetilde{E}\left(F_{\lambda}\right)^{ \pm}$the ± 1 eigenspaces of $\widetilde{\tau}=\sigma_{l}$ acting on $\widetilde{E}\left(F_{\lambda}\right)$, we can compute their orders as follows:

$$
\begin{aligned}
\# \widetilde{E}\left(F_{\lambda}\right)^{+} & =\#\left\{P \in \widetilde{E}\left(F_{\lambda}\right): P^{\sigma_{l}}=P\right\}=\# \widetilde{E}\left(F_{l}\right)=l+1-a_{l} \\
\# \widetilde{E}\left(F_{\lambda}\right)^{-} & =\#\left\{P \in \widetilde{E}\left(F_{\lambda}\right): P^{\sigma_{l}+1}=O\right\}=\# \operatorname{ker}\left(1+\sigma_{l}\right)=\operatorname{deg}\left(1+\sigma_{l}\right)= \\
& \equiv \operatorname{det}\left(1+\sigma_{l}\right) \equiv 1+\operatorname{Tr}\left(\sigma_{l}\right)+\operatorname{det}\left(\sigma_{l}\right) \equiv 1+a_{l}+l \bmod p
\end{aligned}
$$

(we have used the fact that $1+\sigma_{l}$ is separable together with Lemma 1). Since both $l+1 \pm a_{l}$ are divisible by p and $\# \widetilde{E}\left(F_{\lambda}\right)^{ \pm} \neq 0$, it follows that $\widetilde{E}[p]^{ \pm} \simeq \mathbb{Z} / p \mathbb{Z}$ (the p-torsion of \tilde{E} is contained in $\tilde{E}\left(F_{\lambda}\right)$ because of the injectivity of the reduction map $\left.E[p] \hookrightarrow \tilde{E}\left(F_{\lambda}\right)\right)$.

[^1]
[^0]: *Reference: [AEC] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986

[^1]: ${ }^{1}$ Another way of saying this: if E is an elliptic curve with good reduction over a local field F, then the $G_{\bar{F} / F}$ module $E[m]$ is unramified for all m relatively prime to the characteristic of the residue field of F [AEC, Ch. 7, Prop. 4.1].

