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The Characteristic Polynomial of the Frobenius. The main tool in computing the

characteristic polynomials of Galois actions on torsion points is the Weil pairing. If E is an

elliptic curve over an arbitrary �eld K, and m is an integer relatively prime to char(K), then

there is a pairing

e

m

: E[m]� E[m] �! �

m

= m

th

roots of unity in K

having the following properties:

i. It is bilinear in both variables;

ii. It is alternating: e

m

(T; T ) = 1;

iii. It is nondegenerate: if e

m

(S; T ) = 1 for all S 2 E[m], then T = O;

iv. It is Galois invariant: e

m

(S; T )

�

= e

m

(S

�

; T

�

) for all � 2 Gal(

�

K=K);

v. If � : E

1

! E

2

is an isogeny with dual

b

� : E

2

! E

1

, and S 2 E

1

[m]; T 2 E

2

[m] then:

e

m

(S;

b

�(T )) = e

m

(�(S); T ):

To illustrate the use of the Weil pairing, we prove the following:

Lemma 1 Let E be an elliptic curve over a �eld K, let � : E ! E be an isogeny, and let p

be a prime integer not equal to the characteristic of K. Then the determinant of � viewed

as a linear transformation on E[p] ' Z=pZ� Z=pZ satis�es:

det(�) � deg(�) mod p

Proof: Let v

1

; v

2

be a basis of E[p] and let

"

a b

c d

#

2 M

2

(Z=pZ)

be the matrix of � with respect to this basis. Using the Weil pairing e

p

: E[p] ! E[p] we

compute e

p

(�(v

1

); �(v

2

)) in two ways:

e

p

(�(v

1

); �(v

2

)) = e

p

(av

1

+ cv

2

; bv

1

+ dv

2

) = e

p

(v

1

; v

2

)

ad�bc

�

Reference: [AEC] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986
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On the other hand, using the fact that �

b

� =

b

�� = [deg(�)] where

b

� is the dual isogeny, we

can write:

e

p

(�(v

1

); �(v

2

)) = e

p

(v

1

;

b

��v

2

) = e

p

(v

1

; v

2

)

deg �

But e

p

(v

1

; v

2

) 6= 1 because the Weil pairing is nondegenerate, and the two expressions above

show that det(�) � deg(�) mod p.

p

Now let E be an elliptic curve over a number �eld K, and let L be a Galois extension of

K containing E[p], where p is a �xed prime. Let � be an unrami�ed prime of K and let

� 2 Gal(L=K) be the Frobenius substitution corresponding to a prime L of L above �. We

assume that E has good reduction over the local �eld K

�

, and that the characteristic of the

residue �eld of K

�

is l 6= p. We use lemma 1 to compute the characteristic polynomial of �

acting on E[p]:

Proposition 1 With the above hypothesis, the characteristic polynomial of the Frobenius

substitution � acting on E[p] is x

2

� a

�

x + q, where q is the the order of the residue �eld k

of K

�

, and a

�

= 1 + q �#

e

E(k).

Proof: Fixing an embedding

�

K �

�

K

�

, we view � as an element of Gal(L

L

=K

�

). Since E has

good reduction over K

�

and E[p] � L

L

, the reduction map gives an injection

E[p] ,!

e

E(k

0

)

where k

0

is the residue �elds of L

L

. Since the reduction of � is the q

th

power Frobenius

automorphism �

q

of k

0

=k, it follows that the characteristic polynomial of � acting on E[p] is

the same as the characteristic polynomial of �

q

acting on

e

E[p]. The later is easier to compute

since �

q

:

e

E !

e

E is an isogeny of degree q.

Indeed, lemma 1 immediately gives us:

det(�

q

) � q mod p:

To �nd the trace of �

q

we use the formula Tr(A) = 1+ det(A)� det(I �A), which holds for

every 2 by 2 matrix A. We have to compute det(I � �

q

). Using again the lemma, we �nd

that det(I � �

q

) � deg(I � �

q

) mod p. But the isogeny I � �

q

is separable [AEC Ch. III,

Cor. 5.5], therefore deg(I � �

q

) = #ker(I � �

q

) [AEC, Ch. III, Th. 4.10]. Finally

# ker(I � �

q

) = #fP 2

e

E : �

q

(P ) = Pg = #

e

E(k)

where for the last equality we use the fact that �

q

is the topological generator of Gal(

�

k=k).

It follows that

Tr(�

q

) = 1 + q �#

e

E(k) = a

�

:

Hence the characteristic polinomyal of �

q

is x

2

� a

�

x + q 2 (Z=pZ)[x], which is also the

characteristic polynomial of � as observed above.

The characteristic polynomial of complex conjugation. Let E be an elliptic curve

over Q . Fixing an embedding

�

Q ,! C , it makes sense to talk about the action of the complex

conjugation � on E[p], for a prime p. Assuming p > 2 we show that the characteristic

polynomial of � is x

2

� 1. Indeed, it is enough to show that the minimal polynomial is not

x + 1 or x� 1.
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Assuming by contradiction either of these holds, we see that for any P

1

; P

2

2 E[P ]

e

p

(P

1

; P

2

)

�

= e

p

(P

�

1

; P

�

2

) = e

p

(�P

1

;�P

2

) = e

p

(P

1

; P

2

)

because e

p

(P

1

; P

2

) = e

p

(�P

1

: � P

2

). It follows that e

p

(P

1

; P

2

) = 1, which contradicts the

nondegeneracy of the Weil pairing.

Therefore the characteristic polynomial of � is x

2

� 1 as desired.

Application to our objects of interest. First we recall the setting. Let E be an

elliptic curve over Q of conductor N and let K be an imaginary quadratic extension of Q of

discriminant �D, in which all the prime factors of N are split. Let p be an odd prime and

n an odd square free integer coprime to NDp.

Let L = K(E[p]), which is a Galois extension of Q . Note that the extension K(E[p])=K

is unrami�ed outside the primes of K not dividing pN :

1

if � is a prime of K, not dividing

pN , then E has good reduction over the local �eld K

�

, the completion of K at �. Fixing

an embedding

�

K ,!

�

K

�

, it is enough to show that the extension of local �elds K

�

(E[p])=K

�

is unrami�ed. But since the reduced curve

e

E=k is nonsingular, the reduction map gives an

injection E[p] ,!

e

E(k

0

), where k

0

; k are the residue �elds of K

�

(E[p]), K

�

respectively. This

shows that the inertia group of K

�

(E[p])=K

�

�xes all the elements of E[p], as it �xes their

images in

e

E(k

0

). So the inertia group is trivial, that is K

�

(E[p])=K

�

is unrami�ed, that is �

is unrami�ed in L=K.

Let l be a prime factor of n. It follows that l is unrami�ed in L = K(E[p]). We further

assume that the conjugacy class Frob(l) � Gal(L=Q) contains the complex conjugation � .

By Cebotarev's density theorem there are an in�nite number of primes l with this property.

The assumption on Frob(l) implies that the prime l is inert in K (it is unrami�ed and

the residue �eld extension has degree 2); denote by � its prime factor and by F

l

, F

�

the

corresponding residue �elds. Note that the residue �eld of L at a prime above � is again F

�

.

By the computation in the �rst section, the characteristic polynomial of Frob(l) acting

on E[p] is x

2

� a

l

x + l, where a

l

= l + 1�#

e

E(F

l

). From the equality of the characteristic

polynomials of Frob(l) and � for the extension Q(E[p])=Q , it follows that

l + 1 � a

l

� 0 mod p:

Looking now at the extension L=Q , note that � 2 Frob(l) implies that the reduction

e

� of

� modulo a prime L of L above l is well-de�ned; moreover

e

� = �

l

, the l-power Frobenius

automorphism. Denoting by

e

E(F

�

)

�

the �1 eigenspaces of

e

� = �

l

acting on

e

E(F

�

), we can

compute their orders as follows:

#

e

E(F

�

)

+

= #fP 2

e

E(F

�

) : P

�

l

= Pg = #

e

E(F

l

) = l + 1� a

l

#

e

E(F

�

)

�

= #fP 2

e

E(F

�

) : P

�

l

+1

= Og = #ker(1 + �

l

) = deg(1 + �

l

) =

� det(1 + �

l

) � 1 + Tr(�

l

) + det(�

l

) � 1 + a

l

+ l mod p

(we have used the fact that 1+�

l

is separable together with Lemma 1). Since both l+1�a

l

are divisible by p and #

e

E(F

�

)

�

6= 0 , it follows that

e

E[p]

�

' Z=pZ (the p-torsion of

e

E is

contained in

e

E(F

�

) because of the injectivity of the reduction map E[p] ,!

e

E(F

�

)).

1

Another way of saying this: if E is an elliptic curve with good reduction over a local �eld F , then the

G

�

F=F

module E[m] is unrami�ed for all m relatively prime to the characteristic of the residue �eld of F

[AEC, Ch. 7, Prop. 4.1].
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