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Abstract. This is a collection of de�nitions and relevant results in the theory

of Galois modules and their cohomology. The proofs are omitted for the sake

of having all the statements together in one relatively concise place, thus the

designation of `cheat sheet'. The material is largely `borrowed' from the lecture

notes of Mak Trifkovic, Alex Popa, Martin Weissman, and Nick Rogers.

1. Galois Modules

We start with the de�nition of a Galois module. A lot of topology will be

included, but in the most common examples most of the relevant topologies will be

discrete and continuity conditions will become much simpler.

Let G be a topological group (we will be interested in G as a Galois group under

the usual pro�nite topology), R a topological ring, and M a topological R-module.

De�nition 1. M is a G-module if there is a continuous R-linear action of G on

M , and in the case that G is a Galois group, we call M a Galois module.

For brevity's sake, we will write G

L=K

for Gal(L=K) and G

K

for Gal(K=K).

We have the following simpli�ed condition for continuity in the case we will most

frequently deal with:

Proposition 1. If M is a discrete module and a pro�nite group G acts on it, then

M is a G-module if and only if the subgroup of G �xing any given element of M

(i.e., the stabilizer of that element) has �nite index in all of G.

Note the following immediate corollary:

Corollary 1. If further M is �nite, the action of G must always be continuous.

There are a number of functors and operators on Galois modules. The one

which is in some sense the most central to the theory is the invariant submodule

functor:

De�nition 2. If M is a G-module, we write M

G

for the submodule of M �xed by

the action of G.

The theory of Galois cohomology is built up from the failure of this functor to

be right exact. However, before discussing Galois cohomology, we de�ne several

important operators on Galois modules.

De�nition 3. If M and N are two G-modules over R, we can create new G-

modules M
N and Hom(M;N). M
N is simply the module tensor product, with

the G-action given by G acting independently on the left and right, i.e. g(m
n) =

gm
 gn. Hom

R

(M;N) is the usual set of continuous R-module homomorphisms,

with G acting via its usual action on the image, and an inverse action on the

argument, i.e. (g�)m = g(�(g

�1

m)).
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Note that thanks to the inverse in the de�nition, we can recover the set of homo-

morphisms fromM toN which respect the theirG-actions simply as Hom

R

(M;N)

G

,

the invariant submodule of Hom

R

(M;N) under the action of G. We also have two

dual operators on G

K

-modules:

De�nition 4. If M is a G

K

-module, then there is the Pontryagin dual M

_

,

given by Hom

Z

(M;Q=Z). There is also the Cartier dualM

�

, given by Hom

Z

(M;�(K)).

Here the G

K

action on Q=Z is the trivial action, and on �(K) is the obvious action,

under the inclusion of �(K) in K.

2. Cohomology

We now turn our attention to Galois cohomology. Before giving the explicit

de�nition, a note for those familiar with derived functors might not be amiss. Since

this will be the cohomology theory derived from the invariant submodule functor,

it would make sense to expect that it would be constructed by taking an injective

resolution of the module in question, applying the invariant submodule functor, and

taking the cohomology of the resulting complex. This will give the correct answer,

and may provide some helpful intuition to anyone comfortable with derived functors,

but it is not the standard construction given. The standard construction has the

two conveniences of using projective resolutions instead of injectives, and of using

a predetermined resolution which doesn't depend on the module in question.

Recall that if M;N are G-modules, then we have Hom

R

(M;N)

G

is simply the

module of homomorphisms from M to N which respect the G-action. For our

modules, we will work over Z, that is, with arbitrary abelian groups. Then, observe

that we can recover M

G

as Hom

Z

(Z;M)

G

. It is this fact which motivates our

construction of Galois cohomology:

Start with Z, and �x a projective resolution P

i

of Z, as G modules. General

abstract nonsense says that the results will be independent of which resolution we

choose, but for concreteness' sake we will use a particular collection of projective

modules, with P

i

being the free Z-module generated by the set of (i + 1)-tuples

of elements of G. We will make G act on the generators by translation of each

coordinate, i.e. g(g

0

; : : : ; g

i

) = (gg

0

; : : : ; gg

i

), and then extend to P

i

by linearity.

We then have a boundary map d : P

i

! P

i�1

de�ned on the generators by

d(g

0

; : : : ; g

i

) =

i

X

j=0

(�1)

j

(g

0

; : : : ; g

j�1

; g

j+1

; : : : ; g

i

)

Then these P

i

together with the d maps give a projective resolution of Z. We then

bring M into the picture by applying the functor Hom

Z

(�;M)

G

to the sequence to

get a complex K

i

(note that we leave out the Z from the projective resolution, so

that K

i

= Hom

Z

(P

i

;M)

G

, and we also require the homomorphisms to be contin-

uous). Lastly we de�ne H

i

(G;M) to be the cohomology of this complex, called

the cohomology of G with coe�cients in M . Note that all of the operations

involved are operations on Galois modules, so the resulting cohomology groups are

still G-modules. However, the G-action is killed when Hom

Z

(�;M)

G

is applied to

the resolution, so the G-action on all cohomology groups is simply the trivial action.

The elements of K

i

may be described as continuous homomorphisms from the

free Z module generated by (i + 1)-tuples of elements of G to M which respect

the G-action. However, we will describe them somewhat di�erently, as arbitrary

continuous functions from i-tuples of elements of G to M . These are equivalent
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under the following correspondence: given h : G

i

! M , we get a homomorphism

f : P

i

!M de�ned on the generators by the formula

f(g

0

; : : : ; g

i

) = g

0

h(g

1

g

�1

0

; g

2

g

�1

1

; : : : ; g

i

g

�1

i�1

)

One easily checks that multiplying through the arguments by some g 2 G will

result in applying g to the result, so the f is in fact a Z[G] homomorphism as

required, and the inverse correspondence is given by setting

h(g

1

; : : : ; g

i

) = f(1; g

1

; g

1

g

2

; : : : ; g

1

� � � g

i

)

This gives a more convenient description of K

i

, since we no longer need to worry

about respecting the G-action.

Following through the de�nitions gives the following formula for the coboundary

map on K

i

:

dh(g

1

; : : : ; g

i+1

) = g

1

h(g

2

; : : : ; g

i+1

)+

i

X

j=1

(�1)

j

h(g

1

; : : : ; g

j

g

j+1

; : : : g

i+1

)+(�1)

i+1

h(g

1

; : : : ; g

i

)

Then we can recover H

0

and H

1

quite explicitly without any di�culty. K

0

is

simply the set of constant functions, so is identi�ed with M . For h 2 K

0

, we have

dh(g) = gh� h, which is 0 only if G acts trivially on h. Thus H

0

(G;M) =M

G

.

Similarly, we get a very concrete description of H

1

(G;M): the cocycles are con-

tinuous functions h : G!M satisfying h(gg

0

) = gh(g

0

)+h(g), and the coboundaries

are those of the form h(g) = gm�m for some m 2M .

In all the examples we shall consider, the Galois modules will all have the discrete

topology. In these cases, we have:

Proposition 2. For any discrete G

K

-module M , H

1

(G

K

;M) is entirely torsion.

Lastly, as one would hope for out of any cohomology theory, we have the property

that any short exact sequence 0 ! A ! B ! C ! 0 of G-modules gives a long

exact sequence in cohomology:

� � � ! H

n�1

(G;C)! H

n

(G;A)! H

n

(G;B)! H

n

(G;C)! H

n+1

(G;A)! : : :

Before moving on, a note on a slight bizarreness of terminology: in topological

cohomology theories, when one says \cohomology of X with coe�cients in G", one

gets a long exact sequence of cohomology out of maps between di�erent X , holding

the G �xed. In Galois cohomology the situation is reversed, with the relevant short

exact sequences being those between di�erent `coe�cient' G-modules for a �xed G.

3. Restriction and Inflation

LetM be a G-module, and suppose H is a subgroup of G. Then we get a natural

restriction homomorphism from H

q

(G;M) to H

q

(H;M) by restricting cocyles on

G to cocycles on H . If also H is normal in G, then we have that M

H

is a G=H

module, and we also get a natural in
ation homomorphism from H

q

(G=H;M

H

)

to H

q

(G;M) induced by the quotient map from G to G=H . Then we have the

following:

Proposition 3. In
ation-Restriction is exact on H

1

, i.e.

0! H

1

(G=H;M

H

)! H

1

(G;M)! H

1

(H;M)

is exact.
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Proposition 4. If H

1

(H;M) = 0, then In
ation-Restriction is also exact on H

2

,

i.e.

0! H

2

(G=H;M

H

)! H

2

(G;M)! H

2

(H;M)

is exact.

Lastly, the cohomology arising from an In
ation-Restriction sequence is in gen-

eral given by a spectral sequence:

Theorem 1. The Hochschild-Serre spectral sequence has

E

p;q

2

= H

p

(G=H;H

q

(H;M))

and abuts to H

n

(G;M).

This makes sense since the H

q

(H;M) are still G-modules, but with trivial H-

action on them. Note that both of the previous propositions, which may be proven

directly without too much e�ort, are also immediate consequences of this spectral

sequence.

4. The Cup Product and Tate Local Duality

First, we have the cross product map fromH

m

(G;M)
H

n

(G

0

;M

0

) toH

m+n

(G�

G

0

;M 
M

0

) de�ned in more or less the obvious way, except with a sign depending

on m + n. In the case where G = G

0

, we then compose with the map induced by

the diagonal homomorphism to get the cup product map:

[ : H

m

(G;M)�H

n

(G;M

0

)! H

m+n

(G;M 
M

0

)

This can be given explicitly in terms of cycles as follows:

(u [ v)(g

1

; : : : g

m+n

) = (�1)

mn

u(g

1

; : : : g

m

)
 g

1

g

2

� � � g

m

v(g

m+1

; : : : g

m+n

)

Observe that if M is a G

K

module, M 
 M

�

maps naturally to �(K), so if

M

0

= M

�

, cup product induces a map to H

m+n

(G

K

; �(K)). If also K is a local

�eld, we have:

Proposition 5. H

2

(G

K

; �(K)) = Q=Z

This means that for M a G

K

module with K a local �eld, the cup product

induces a map

H

i

(G

K

;M)�H

2�i

(G

K

;M

�

)! Q=Z

Then Tate Local Duality states:

Theorem 2. For a �nite Galois module M over a local �eld K, the cup product

induces a perfect pairing between H

i

(G

K

;M) and H

2�i

(G

K

;M

�

). Thus, it induces

an isomorphism of Galois modules

H

i

(G

K

;M)

_

�

=

H

2�i

(G

K

;M

�

)

Note that in particular, everything beyond H

2

vanishes for such a module.
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5. Selmer and Shafarevich-Tate Groups of an Abelian Variety

Let A be an abelian variety over a number �eld K. Then we can consider A(K),

the K-valued points of A, to be a G

K

-module. We write A[m] for A(K)[m], the

full group of m-torsion points of A.

Then the Kummer sequence

0! A[m]! A(K)! A(K)! 0

is exact, where the frist map is inclusion and the second is multiplication by m.

For every place � of K, we de�ne a restriction map res

�

from H

k

(G

K

; A(K))

to H

k

(G

K

�

; A(K

�

)); this map is the composition of the usual restriction map from

H

k

(G

K

; A(K)) to (H

k

(G

K

�

; A(K)) induced by the inclusion G

K

�

,! G

K

, com-

posed with the map from H

k

(G

K

�

; A(K)) to H

k

(G

K

�

; A(K

�

)) induced by the in-

clusion of A(K) ,! A(K

�

). Then we de�ne the following groups:

De�nition 5. The Shafarevich-Tate group of A over K, written X(A=K),

is the kernel of the map from H

1

(G

K

; A(K)) to

Q

�

H

1

(G

K

�

; A(K

�

)), where the

product is taken over all places of K, and each map in the product is the res

�

map.

De�nition 6. The m-Selmer group of A over K, written Sel

m

(A=K), is the

subgroup of H

1

(G

K

; A[m]) which maps toX(A=K) under the map on H

1

induced

by the inclusion A[m] ,! A(K).

Proposition 6. The following is an exact sequence:

0! A(K)=mA(K)! Sel

m

(A=K)!X(A=K)[m]! 0

The Shafarevich-Tate group is motivated by an important geometric description:

Proposition 7. H

1

(G

K

; EK) is in bijection with the set of isomorphism classes

of curves over K having Jacobian E, called the Weil-Chateler group of E over

K, and denoted WC(E=K).

The trivial class is, under this correspondence, the class of curves isomorphic to

E. The Shafarevich-Tate group is therefore the set of isomorphism class of curves

whose Jacobian is E and which are themselves isomorphic to E everywhere locally.

Since a curve of genus one is isomorphic to its Jacobian if and only it has a point

over K, this is also the same thing (using slightly sloppy language which is actually

�ne due to the group law induced by H

1

) as curves over K with Jacobian E and

a rational point everywhere locally, modulo curves with a global K-ration point.

Thus, it is a measure of the failure of the Hasse principle.

De�nition 7. For a G

K

module M , and a place � of K, we say that a subgroup of

H

k

(G

K

;M) is unrami�ed at � if it is contained in the kernel of the restriction

map from H

k

(G

K

;M) to H

k

(I

K

�

;M) induced by inclusion I

K

�

,! G

K

, where I

K

�

is the inertial subgroup of G

K

�

.

Then the Selmer groups of abelian varieties have a rather nice property:

Theorem 3. For any abelian variety A, Sel

m

(A=K) is unrami�ed outside S, where

S is the set of places containing those which divide m, those where A has bad

reduction, and the in�nite places.

This can be shown to imply that:

Theorem 4. For any abelian variety A, Sel

m

(A=K) is �nite.
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Conjecture 1. For any elliptic curve E, X(E=K) is �nite.

This conjecture is made a modicum more approachable by the fact thatH

1

(G

K

; E(K)),

as the cohomology of a discrete Galois module, is entirely torsion, and therefore so

isX(E=K). This means that controlling the relationship between E(K)=mE(K)

and Sel

m

(E=K) can be used to prove the �niteness of X. Unfortunately, while

one can hope to show that the p-part ofX is trivial almost everywhere by showing

E(K)=pE(K)

�

=

Sel

p

(E=K), at the places p where X isn't trivial, the �niteness

of the Selmer group at those places doesn't su�ce to prove that X will be �nite,

as the p-part isn't known to be �nitely generated, and could be in�nite even if

all p

n

torsion is �nite. Thus, at the p where X isn't trivial, some rather delicate

calculations are necessary with E(K)=p

n

E(K) and Sel

p

n

(E=K) at all powers of p.


