MODULAR CURVES AND HEEGNER POINTS

ALEXANDRU GHITZA

ABSTRACT. The ultimate goal of these lectures is to define Heegner points, which are the building blocks
for Kolyvagin’s Euler system. We start by defining the modular curves Xo(N) and proving that j and jy
generate their field of rational functions. We use the modular equation to give a model of Xo(N) over Q,
then discuss parametrizations of elliptic curves by modular curves. We give a moduli space interpretation
for Xo(N), define Heegner points and discuss their basic properties.

From the paper ([Gro91]), the construction of y, (p. 238, from beginning of section 3).

References: Cox ([Cox89]), Milne ([Mil]), Rohrlich ([Roh97]).

1. MODULAR CURVES

Let H denote the upper half plane {z € C : Im(z) > 0} and let N be a positive integer. Consider the
following subgroup of SLo(Z):

mm:{(‘; Z)ESLg(Z):cEO (modN)}.

To(V) acts on H via fractional linear transformations:

a b _az+b
( ¢ d ) Tt d
and we consider the quotient space Y(IN) = H/Lo (N). This is a non-compact Riemann surface. Similarly, let
H* = HUP!(Q) denote the extended upper half plane. ['y(N) acts on H* in the same way, and the quotient
is a compact Riemann surface, the modular curve Xo (V). The finitely many elements of Xo(N) \ Yo(V) are
called cusps.
A modular function for I'g(N) is a meromorphic function on Xo(N). Equivalently, it is a meromorphic
function on H satisfying
1. f(yz) = f(z) for all y € T'y(N), z € H;
2. f(z) meromorphic at the cusps.
The second condition needs some explanation. We start by considering the cusp co. f(z) is invariant under

T = < (1) } ), so f(z+ 1) = f(2). Therefore f(z) can be expressed as a function f*(q) of the variable

q = €. As z ranges over H, ¢(z) ranges over a punctured disk 0 < |g| < p. We say that f(z) is
meromorphic at co if f*(¢) is meromorphic at ¢ = 0, that is if f has an expansion

f2) =Y ang™

n=no

Now if 7 # oo is a cusp, there exists v € SLa(Z) such that 7 = y(oc0). The function z — f(vz) is invariant
under yI'o(N)y~!, and f(vz) is required to be meromorphic at co.

A modular form for I'g (V) of weight 2k is a holomorphic function on H such that

1. f(v2) = (cz + d)?) f(2) for all v € Ty(N), 2 € H;

2. f is holomorphic at the cusps.
A modular form is called a cusp form if it is zero at the cusps.

We define
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go, resp. gs are modular forms of weights 4, resp. 6. A is a cusp form of weight 12. j is a modular function.
The g-expansion of j(z) is

j(z) = 1728

1 oo
](Z) =-+ chqn7
q n=0
where ¢, € Z for all n.
2. THE MODULAR EQUATION

Theorem 1. j is holomorphic on H. j'(z) # 0 for all z € H\ {vi,ve*™/? : v € SLy(Z)}. If z = i, then
j(z) = 1728, j'(2) = 0 and j"(2) # 0. If 2z = ve*™/3  then j(z) = j'(z) = j"(2) = 0 and j"'(2) # 0.

Proof. See [Cox89], pp. 221-222. O
Let jn(2) = j(Nz) for all z € H*.

Theorem 2. jy(z) is a modular function for I'g (V).

Proof. See [Cox89], pp. 226-229. O

Lemma. For all z € H there exists v € SLy(Z) such that |Re(yz)| < 1/2 and |Im(yz)| > 1/2.

Proof. See [Cox89], p. 222. O

Note that a holomorphic modular function f for SLy(Z) is a polynomial in j(z). f is meromorphic at
00, 5o its g-expansion has finitely many terms in ¢~!. Since the g-expansion for j starts with a ¢!, there
exists a polynomial P(X) € C[X] such that g(z) = f(z) — P(j(z)) is holomorphic at co. But then g(z)
is holomorphic on Xo(NV), which is a compact Riemann surface. Therefore g is a constant and f(z) is a
polynomial in j(z).

Theorem 3. Every modular function for SLy(Z) is a rational function of j(z).

Proof. Let R = {z € H: |Re(z)| < 1/2,|Im(2)| > 1/2}. f(2) has only finitely many poles in R. Suppose
there is a pole of order k at 7 € R.
If j'(1) # 0, then (j(z) — (7)) f(2) is holomorphic at 7.

If j'(r) = 0, then either 7 =4 or 7 = e>™i/3_ Suppose T = i. In a neighborhood of i, we have
_ 902
f(Z) - (Z_Z-)ka
where ¢(z) is holomorphic and ¢(i) # 0. But f(z) is invariant under < _01 (1) >, S0
9(=1/z)
= f(—1 = .
1) = (-1/2) = A

We conclude that

o(-1/2) = £,

which evaluated at i gives g(i) = (—=1)¥g(i). Since g(i) # 0, we must have that k is even. But j(z) — 1728
has a zero of order 2 at i, so (j(z) — 1728)*/2 f(z) is holomorphic at i.

; . . . 1 1 . .
If 7 = ¢2™/3 one uses invariance with respect to ( 1 0 > to show that k is a multiple of 3, then
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§(2)*/3 f(2) is holomorphic at 7.

So there exists a polynomial Q(X) such that Q(j(z))f(z) is holomorphic on R. But R contains a complete set

of representatives for the action of SLy(Z), so by invariance Q(j(z))f(z) is a holomorphic modular function

for SL»(Z),i.e. a polynomial of j(z). O
Let pu = [SL2(Z) : To(N)], and write To(N)v;, ¢ = 1,...,p for the cosets of T'o(N) in SLy(Z) (1 = 1).

Define

C(N) = {( 8 2 ) cad=N,a>0,0<b< d,ged(a,b,d) :1}.

N

The element oy = ( 0

2 ) is distinguished by the fact that

Lo(N) = (04 "SL2(Z)o0o) N SLy(Z).

There is a one-to-one correspondence between elements of C'(IN) and cosets of I'g(IN), given by
o~ (05" SLy(Z)o) N SLy(Z).
Let v € SLy(Z) and choose o € C(N) such that v lies in the right coset corresponding to o; there exists
7' € SLy(Z) such that opy = v'o. Therefore
(1) in(v2) = jlo0yz) = j(Y'02) = j(02).
Consider the following polynomial in X:
u

N (X, 2) = [[(X = in(7:2)).
i=1
The coefficients of @y are symmetric polynomials in the jy(7;z), so they are holomorphic on H and mero-
morphic at the cusps. Since the action of SLy(Z) simply permutes the terms in the product, they are also
SLy(Z)-invariant. Hence the coefficients of ®n(X,z) are holomorphic modular functions, i.e. polynomials
of j(z). So there exists a polynomial &5 (X,Y) € (C[X Y] such that

(2) H —jn(7i2)

By (1), we can write
On(X,j(2) = [[ (X =i(02)).
ogeC(N)
But jn(z) = j(Nz) = j(ooz), therefore
N (jn(2),4(2)) = 0.
®N(X,Y) = 0 is called the modular equation. ®n(X,Y) is irreducible with respect to X (hence it is the
minimal polynomial of jn(z) over C(j(z))).
Theorem 4. Every modular function for I'g(/V) is a rational function of j(z) and jn(z).

Proof. Let f(z) be a modular function for I'g (N ) Consider the polynomial in X

Zf (12) [T(X = jiv (302))-

k#i
Using an argument similar to the given above for ®u, one shows that the coefficients of G are modular
functions for SL4(Z), hence rational functions of j(z). That is, G(X, j(z)) € C(j(2))[X]. We differentiate (2)

o

G(X,2) = On(X,j(2) Y ——"— X

i=1 —]nyz

%(]N(Z);](Z)) = 1;[1(]N(Z) _jN(ViZ)),
and get
0PN

G(in(2),(2)) = F(2) 55 (N (2),(2)).

0X
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But ®5(X,j(2)) is irreducible so the first derivative is nonzero. Finally

G(in(2),i(2)
(0/0X)®n(in(2),i(2))

f(z) =

3. CANONICAL MODEL OVER Q AND MODULAR PARAMETRIZATION

We need some more information concerning the polynomial ® 5. First note that invariance with respect
to Lo (V) gives

On(j(2),in(2)) = @n(i(2),(Nz)) = (j(=1/2),(=1/Nz)) = en(jn (=1/Nz),j(=1/Nz)) = 0.
It is in fact true (and easy to show, see [Mil] p. 84) that ®x(X,Y) is symmetric.
Theorem 5. &5 (X,Y) € Z[X,Y].

Proof. Let ¢ = e2™/N | Since
. 1 &~ .
i@ = +Y ead",
n=0

a b
0 d
a Fourier expansion in powers of ¢ whose coeflicients are in Z[(]. Therefore any symmetric polynomial
in the jy(7viz) has such an expansion with coefficients that are algebraic integers. We know that such
polynomial lies in C[j(z)], and we claim that it has algebraic integer coefficients.

Suppose S = > cpj(z)™ € C[j(z)] has some coefficients that are not algebraic integers. Let ¢, be the
coefficient of this type, with largest index. Then the coefficient of ¢~* in the g-expansion of S is not an
algebraic integer, and hence S cannot be a symmetric polynomial in the jy(v;z).

So we know that ®n(X,Y) = > ¢y, X™Y"™ with algebraic integer ¢, ,’s. We substitute the g-expansion
of j into the modular equation @ (jn(2),j(z)) = 0 and equate coefficients of powers of ¢. This gives a set
of linear equations in the ¢, , with rational coefficients. The ¢, , are uniquely determined by this system,
because there is only one monic minimal equation for jn(z) over C(j(z)). The system has a solution in C,
and this solution is unique so it must lie in Q. But we already know that c,, , are algebraic integers, so they
must be in Z. O

where ¢, € Z,and jn(v:2) = j(oz) = j((az+b)/d) for some o = < > € C(N), we get that jn(7:2) has

1/N

Note that except for the first few values of N, the polynomial ® is not known explicitly (for N =11, it
has degree 21 and coefficients up to 1059).

Since Xo(NV) is a compact Riemann surface, there is a unique structure of a nonsingular projective curve
on Xo(N) which is compatible with the conformal structure. We write Xo (V)¢ for Xo(N) viewed as an
algebraic curve over C. This is the unique nonsingular projective curve over C having C(j(2), jn (2)) as its
field of rational functions.

Let C be the curve over Q defined by the modular equation ®5(X,Y) = 0. C is singular, so we remove
the singular points and embed the result into a nonsingular projective curve C'. The coordinate functions x
and y generate the field of rational functions on C’ and satisfy the relation ®(x,y) = 0. If Cf is the curve
defined by C' over C, there is a unique isomorphism C{. = Xo(N)c such that the rational functions x and
y correspond to jy(z) and j(z). We identify the two curves via this isomorphism and regard C' as a model
of Xo(N)c over Q. This is called the canonical model of X¢(NN) over Q and is denoted Xo(IN)g.

Theorem 6. For any elliptic curve E over QQ, there exists a positive integer N and a surjective morphism
¢ : Xo(N) — E defined over Q.

We refer to the map ¢ as the modular parametrization of E.
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4. MODULI INTERPRETATION OF MODULAR CURVES

Let k be a field. A moduli problem over k is a contravariant functor F from the category of varieties over
k to the category of sets. Usually, (V') is the set of isomorphism classes of certain objects over V.

A solution to the moduli problem F is a pair (V, «), where V is a variety over k and « : F(k) — V (k) is
a bijection satisfying the following conditions:

1. Let T be a variety over k and f € F(T'). Any t € T'(k) corresponds to a map Maxspec(k) — V, so f
defines an element f; € T'(k). We have a map ¢t — a(f) from T'(k) to V (k) and this map is required
to be a morphism.

2. Let Z be a variety over k and 3 : F(k) — Z(k) be a map satisfying condition 1. Then foa™! : V (k) —
Z(k) is a morphism.

The point of the definition is that if a solution exists, we want it to give an identification V (k) = F(k) and
to be unique.

Let V be a variety over C. An elliptic curve over V' is a morphism F — V', where E is the subvariety of

V x P! defined by a nonsingular Weierstrass equation with the a; regular functions on V. We define & n (V)
to be the set of isomorphism classes of pairs (E,G) where E is an elliptic curve over V and G is a cyclic
subgroup of E of order N.

Theorem 7. Let k be a field, N an integer not divisible by the characteristic of k. Then the moduli problem
&o,n has a solution (M, a) over k. When k = Q, M is canonically isomorphic to Yy(N)g. The map

o,n (k) = M(k) = Yo(N)q(k)
is given by (E,G) — (j(E),j(E/Q)).
Proof. See [Mil], pp. 94-95. O

5. HEEGNER POINTS

Let E be an elliptic curve (without CM) over Q, and fix a modular parametrization ¢ : Xo(N) — E
which maps oo to 0. Let K = Q(v/—D) be an imaginary quadratic field of discriminant —D (D # 3,4) and
where all prime factors of N are split, (N) = N - A/. Let O be the ring of integers of K.

Fix an integer n > 1, prime to N and let O, = Z + nO be the order of conductor n in O. Let w be a
generator of O,, over Z. The ideal N;, = A'N O,, is an invertible O,,-module with O,,/N,, = Z /NZ, so there
exists an integer k, 0 < k < N — 1, such that w — k € N,,. {l,w — k} generate O, as a Z-module, while
{N,w — k} generate N\, as a Z-module. Then C/0O,, is an elliptic curve with CM by O,, and G = N,[!/0O,
is a cyclic subgroup of order N such that the quotient C/N, ! also has CM by Op; so the point

= () (1)

has coordinates lying in the ring class field K, of O (without loss of generality, (w — k)~! € H).
The x,, are called Heegner points. They yield points on the original elliptic curve E as follows. Let
Yn = p(z,,). Since ¢ is defined over Q and z,, is defined over K,,, we have y,, € E(K,,). Put

Yo = Tri (yn) € E(K).

Gross and Zagier proved that y1 x has infinite order if and only if the analytic rank of E/K is 1. Therefore,
Heegner points can be used to construct non-torsion K-rational points on elliptic curves of rank 1. For
details on how to implement the construction, see [Elk94]. The reason why they are of interest to us is that
their images {y,,} form an Euler system which can be used to bound the Selmer group of E.
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