
A criterion for local triviality.

by FABRIZIO ANDREATTA

1 Introduction.

The goal of these brief notes is to prove Proposition 6.2 of Gross' paper. Let us �x some notation.

Let E be a modular elliptic curve over Q of conductor N . Let

':X

0

(N) �! E

be a modular parametrization. Let K be the usual imaginary quadratic �eld. Using Heegner

points, we have constructed certain cohomology classes c(n), d(n). We will give a criterion to

decide whether they lie in the p-Selmer group (resp. p-Shafarevich group). The main technique

is the study of the reduction of E at a place v of K. There is an elementary approach to

the problem. Consider the base change E

v

of E to the local �eld K

v

. Then one can de�ne a

minimal Weierstrass equation of E

v

with coe�cients in the ring of integers of K

v

and de�ne

the reduction of E

v

at v as the curve de�ned by reducing this equation modulo v. This works

�ne if E

v

has good reduction, i. e. if v does not divide the conductor N . Instead, if E

v

has

bad reduction at v, this approach gives some problems. The �rst is that it does not capture

enough arithmetic information about E

v

, at least not enough for Kolyvagin's work. The second

problem is that we need to reduce the Jacobian J

0

(N) of X

0

(N) and the map '

�

:J

0

(N) ! E

induced by '. As already noted in [Cl] the method of the Weierstrass model does not generalize

to these situations. The right approach goes via the so called N�eron models. The plan of the

notes is to deal �rst with the places v where E has good reduction and then to introduce the

geometry necessary to deal with the places of bad reduction.

2 The main result.

So far, we have constructed for suitable integers n classes c(n) 2 H

1

(K;E

p

). For each n we get

a class d(n) 2 H

1

(K;E)

p

as the image of c(n) via H

1

(K;E

p

)! H

1

(K;E)

p

. See [Gr, Section 4]

or [Ja]. Consider now the following diagram with exact rows:

0 �! Sel(E=K)

p

�! H

1

(K;E

p

) �! q

v

H

1

(K

v

; E)

p

?

?

y

?

?

y










0 �! X(E=K)

p

�! H

1

(K;E)

p

�! q

v

H

1

(K

v

; E)

p

:

The goal of these notes is to give criteria to decide if the classes c(n) (equiv. d(n)) are in

Sel(E=K)

p

(resp. (E=K)

p

). In this direction we prove:

2.1 Proposition. (1) The class d(n)

v

is trivial in H

1

(K

v

; E)

p

for all the �nite places v not

dividing n and for the archimedean place v =1.

(2) If n = l m and � is the unique prime of K dividing l, the class d(n)

�

is trivial in H

1

(K

�

; E)

p

if and only if P

m

2 pE(K

�

m

) = pE(K

�

) for one (and hence all) places �

m

of K

m

dividing �.
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3 The proof of [Gr, Prop. 6.2 (2)].

Using class �eld theory, we have proven that � splits completely in K

m

. Moreover, for every

prime �

m

of K

m

above �, there is a unique prime �

n

of K

n

above �

m

. The prime �

n

is totally

rami�ed of index l + 1 over K

m

. We let G

l

be the Galois group of the extension K

n

over K

m

.

It is cyclic of order l + 1. Hence we can choose a generator �

l

. We denote by F

�

the residue

�eld of K

�

(equivalently of K

�

m

or of K

�

n

). By construction, the localization d(n)

�

of d(n) in

H

1

(K

�

; E)

p

lives in H

1

�

G

l

; E(K

�

n

)

�

. By [Gr, (4.6) and following] or by [Ja, pag. 3], the class

d(n)

�

is represented by the cocycle:

G

l

�! E(K

�

n

)

� 7! �

(��1)P

n

p

:

Here �

(��1)P

n

p

is obtained from the unique point of E(K

n

) whose image by multiplication by p

is �(��1)P

n

. Since l does not divide N by assumption, we can use [Cl, Thm 2] to conclude that

the elliptic curve E over Q has good reduction at l. This implies the existence of the following

cartesian diagram:

~

E �! E  � E�

Spec(Q)

Spec(Q

l

)

?

?

y

?

?

y

?

?

y

Spec(F

l

) �! Spec(Z

l

)  � Spec(Q

l

)

where E�

Spec(Q)

Spec(Q

l

) is the curve E basechanged from Q to Q

l

, while E is the \elliptic

curve" over Z

l

de�ned by the minimal Weierstrass model of E at l and

~

E is the reduced curve

modulo l. First of all we remark that, by the valuative criterion of properness, we have an

isomorphism of G

l

-modules

E(O

�

n

)

�

�!E(K

�

n

)

where we de�ne E(O

�

n

) := Hom

Spec(Z

l

)

�

Spec(O

�

n

); E

�

. Here O

�

n

is the ring of integers of

K

�

n

. We denote by

^

E the formal group of E at l. The notation suggests that it is simply the

completion of E along the identity section 0 2 E(O

Z

l

). Then we have an exact sequence of

G

l

-modules

0 �!

^

E(m

�

n

) �! E(O

�

n

) �! E(F

�

) =

~

E(F

�

) �! 0

where m

�

n

is the maximal ideal of O

�

n

. This sequence describes the reduction of points on E

modulo l. We remark that multiplication by p on

^

E is an isomorphism since p and l are coprime.

This is due to the fact that multiplication by p on the tangent space of E at the identity section

0 is an isomorphism. In particular, we have that H

1

�

G

l

;

^

E(m

�

n

)

�

p

= 0. Since

E(O

�

n

)

G

l

= E(Z

l

) �!

~

E(F

l

) =

~

E(F

�

)

G

l

is surjective, we conclude that

H

1

(G

l

; E(K

�

n

)

p

,�! H

1

�

G

l

;

~

E(F

�

)

�

p

= Hom

gr

�

G

l

; ;

~

E(F

�

)

p

�

:

The hooked arrow means injection. The last equality follows since G

l

acts trivially on

~

E(F

�

).

To conclude the proof, it su�ces to prove that the point Q

n

:=

(�

l

�1)P

n

p

has trivial reduction

modulo �

n

.
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We recall that P

n

:=

P

�2S

�D

m

D

l

y

n

where S is a set of coset representatives of G

n

=

Gal(K

n

=K

1

) in G

n

= Gal(K

n

=K). By de�nition of D

l

, we have (�

l

� 1)D

l

= l + 1 � Tr

l

. For

all this, see [Ja, pag. 1]. Hence we have

(�

l

� 1)P

n

=

X

S

�D

m

�

(l + 1� Tr

l

)y

n

�

:

Here we have used the fact that �

l

commutes with D

m

. Next we use [Gr, Prop. 3.7(1)] or

equivalently [Cl, Prop. 8(1)], which state that Tr

l

y

n

= a

l

y

m

. Hence

(�

l

� 1)P

n

=

X

S

�D

m

�

(l + 1)y

n

� a

l

y

m

�

:

By [Gr, (3.3)] the integers l + 1 and a

l

are divisible by p, hence

Q

n

=

X

S

�D

m

�

l + 1

p

y

n

�

a

l

p

y

m

�

:

By [Gr, Prop. 3.7(2)] or equivalently [Cl, Prop. 8(2)], we know that y

n

� Forb(�

m

)(y

m

) modulo

�

n

. Hence we conclude that

l + 1

p

y

n

�

a

l

p

y

m

�

�

l + 1

p

Frob(�

m

)�

a

l

p

�

y

m

(mod�

n

)

for all primes �

n

of K

n

above �. For � 2 Gal(K

n

=K) we conjugate this congruence modulo

�

�1

�

n

by � to obtain:

�

�

l + 1

p

y

n

�

a

l

p

y

m

�

� �

�

l + 1

p

Frob(�

�1

�

m

)�

a

l

p

�

y

m

(mod�

n

)

�

�

l + 1

p

Frob(�

m

)�

a

l

p

�

�(y

m

) (mod�

n

):

Hence

Q

n

�

�

l + 1

p

Frob(�

m

)�

a

l

p

�

P

m

(mod�

n

):

We remark that

Gal(F

�

=F

l

) = h1; � i = hFrob(�

m

)i = hFrob(l)i

where � is complex conjugation and Frob(l) = Frob(�

m

) is Frobenius at l. Due to [Gross, Prop.

5.4(1)] or equivalently [Ro, Prop. 2(a)], the reduction of P

m

modulo �

m

lies in the �

m

eigenspace

of

~

E(F

�

)=p

~

E(F

�

) for the action of � . Consider the eigenspaces

~

E(F

�

)

+

;

~

E(F

�

)

�

�

~

E(F

�

)

with respect to � = Frob(l). On the eigenspace

~

E(F

�

)

+

the automorphism Frob(l) acts as the

identity. Hence (l+1)Frob(�

m

)�a

l

acts as multiplication by l+1�a

l

. This integer is the order of

~

E(F

�

)

+

being the degree of Id�Frob(l). On the eigenspace

~

E(F

�

)

�

the automorphism Frob(l)

acts as minus the identity. Hence (l+1)Frob(�

m

)�a

l

acts as multiplication by �l�1�a

l

. The

inverse of this integer is the order of

~

E(F

�

)

�

. In any case we conclude that (l + 1)Frob(l) � a

l

kills

~

E(F

�

). We have also an exact sequence

0 �!

~

E(F

�

)

�

m

p

�!

~

E(F

�

)

�

m

p

�!

~

E(F

�

)

�

m

�!

�

~

E(F

�

)=p

~

E(F

�

)

�

�

m

�! 0:
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Let � be the endomorphism

l+1

p

Frob(�

m

) �

a

l

p

=

l+1

p

�

m

�

a

l

p

of

~

E(F

�

)

�

m

. We remark that

~

E(F

�

)

�

m

is cyclic since

~

E(C)

�

m

is. Hence � is not the zero endomorphism. By [Gross, (3.4)]

we have that

~

E(F

�

)

�

m

p

�

=

Z=pZ. In particular, � is an automorphism on

~

E(F

�

)

�

m

p

. Hence the

kernel of � in

~

E(F

�

) is precisely p

~

E(F

�

). Finally, we conclude that the reduction

~

Q

n

of Q

n

is

zero in

~

E(F

�

)

p

if and only if the image via � of the reduction

~

P

n

of P

n

is zero in

~

E(F

�

). This is

equivalent to require that

~

P

n

2 p

~

E(F

�

). Since multiplication by p is an isomorphism on

^

E(O

�

n

),

we conclude that the last condition is equivalent to require that P

n

2 pE(K

�

n

) as claimed.

4 The proof of [Gr, Prop. 6.2 (1)] for v prime to n and N.

Let us �x a place v which is either archimedean or �nite, but not dividing nN . If v is the

in�nite place, then K

v

= C ant H

1

(K

v

; E)

p

is trivial. Suppose that v is �nite. In this case

the local class d(n)

v

2 H

1

(K

v

; E)

p

is in the image of H

1

(K

un

v

; E)

p

via the in
ation map. Here

K

un

v

is the maximal unrami�ed extension of K

v

. Infact, the Heegner point P

n

is de�ned over

an extension K

n

of K which is unrami�ed at v. By assumption, the elliptic curve E has good

reduction at the prime l of Z below v. As in the previous section we can de�ne the Weierstrass

model E ! Spec(Z

l

) of E�

Spec(Q)

Spec(Q

l

). As before we get an injection

0 �! H

1

(K

un

v

=K

v

; E)

p

�! H

1

(F

sep

v

=F

v

;

~

E)

p

where F

sep

v

is a separable (= algebraic) closure of the residue �eld F

v

of K

v

. We conclude the

proof using the following theorem of Lang:

4.1 Theorem. Any torsor under

~

E de�ned over F

v

admits an F

v

-valued point and hence it is

trivial. In particular, H

1

(F

sep

v

=F

v

;

~

E) = 0.

5 N�eron models.

5.1 De�nition. Let L be the fraction �eld of a Dedekind domain O

L

. Let A be an abelian

variety over L. The N�eron model of A over Spec(O

L

) is a scheme, smooth and separated over

Spec(O

L

)

A �! Spec(O

L

)

such that

1. Its generic �ber is A! Spec(L), i. e. we have a cartesian diagram:

A

�

=

A�

Spec(O

L

)

Spec(L) �! A

?

?

y

?

?

y

Spec(O

L

) �! Spec(L):

2. The scheme A ! Spec(O

L

) has the following universal property. For any scheme X !

Spec(O

L

) smooth over Spec(O

L

) and any morphism

 

L

:X �

Spec(O

L

)

Spec(L) �! A

there is a unique morphism

 :X �! A
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such that

 �

Spec(O

L

)

Spec(L) =  

L

;

i. e. such that the following diagram is commutative:

X �

Spec(O

L

)

Spec(L) �! X

?

?

y

 

L

?

?

y

 

A

�

=

A�

Spec(O

L

)

Spec(L) �! A:

5.2 Theorem. The notation is as in the de�nition. The N�eron model of A over Spec(O

L

)

exists.

Proof: This was proven by N�eron. For modern proofs see [Ar] and [Ne]. The case of elliptic

curves is discussed in [Sil].

5.3 Remark. The de�nitionmight seem a bit abstract. See [Sil] for a more intuitive description

both of the terms used above (smooth, separated ecc.) and for the property (2). Let see it in

action.

5.4 Proposition. The notation is as in the de�nition. Then the N�eron model

A �! Spec(O

L

)

of A over Spec(O

L

) is unique up to unique isomorphism. Moreover, it has a unique group scheme

structure over Spec(O

L

) extending the group variety structure on A.

Proof: Use the universal property.

The �rst example is the case of good reduction:

5.5 Proposition. The notation is as usual. Let A ! Spec(O

L

) be an abelian scheme, i. e.

a group scheme proper and smooth over Spec(O

L

) (a family of abelian varieties!). Then A !

Spec(O

L

) is the N�eron model of its generic �ber A := A�

Spec(O

L

)

Spec(L).

Proof: The proof boils down to the valuative criterion of properness. See [Ar, Prop. (1.3)].

5.6 Remark. In the case that A is an elliptic curve, L is a local �eld and A has good reduction,

then the Weierstrass model A of A over Spec(O

L

) satis�es the conditions of the proposition.

5.7 Remark. Suppose that A is an elliptic curve, L is a local �eld and A has bad reduction.

Let F be the residue �eld of O

L

. By the universal property of the N�eron model there is always

a morphism from the Weierstrass model (with the singularity removed) to the N�eron model.

But while the special �ber (=reduction to F ) of the Weierstrass model is an irreducible cubic

curve, the special �ber of the N�eron model might be not connected. Hence, in general, the

two concepts are quite di�erent. For example, consider the elliptic curve over Q de�ned by the

equation y

2

= (x�p)(x+p)(x�1) with p a prime. This equation is also the minimal Weierstrass

equation. Let us work over Q

p

. The reduction of the curve modulo p is y

2

= x

2

(x� 1). Hence

we have multiplicative reduction. The Weierstrass model with the point (0; 0) in char p removed

is smooth and separated, but does not satisfy the universal property which characterizes the

N�eron model of the elliptic curve. Infact, the section x = 0; y = p de�nes an integral point

on the Weierstrass model which goes through the point (0; 0) in char. p. Contradicting the

following proposition.
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5.8 Remark. We also remark that the N�eron model changes, in general, with respect to

extensions of the ground �eld. More precisely. Let O

L

� O

M

be an extension of Dedekind

domains with fraction �elds L and M . Let A be an abelian variety over L. Let A

L

be the

N�eron model of A over Spec(O

L

). Let A

M

be the N�eron model of A�

Spec(L)

Spec(M) over

Spec(O

M

). By the universal property, we have a morphism A

L

�

Spec(O

L

)

Spec(O

M

) ! A

M

.

Then it is not true, in general, that this morphism is an isomorphism. In some cases this holds.

For example, in the case of good reduction, i. e. when A

L

is an abelian scheme over Spec(O

L

).

Or, by the universal property, when O

L

� O

M

is unrami�ed. For counterexamples, remember

that there are examples of elliptic curves over a local �eld L having bad reduction, but having

good reduction over an extension M of L. In this case the N�eron model of the elliptic curve

over Spec(O

L

) is not an abelian scheme, i. e. its reduction to the residue �eld is not an abelian

variety, but the N�eron model over Spec(O

M

) is an abelian scheme!

What mainly interests us, is the following:

5.9 Proposition. The notation is as in the de�nition. Let L

un

be the maximal unrami�ed

extension of L. Let O

un

L

be the normalization of O

L

in L

un

. De�ne

A(O

un

L

) := Hom

Spec(O

L

)

�

Spec(O

un

L

);A

�

and A(L

un

) := Hom

Spec(L)

�

Spec(L

un

); A

�

:

Then the map

A(O

un

L

) �! A(L

un

)

is a bijection.

5 First reductions in the proof of [Gr, Prop. 6.2(2)] for bad reduction.

From now on we focus on the case that L is the local �eld K

v

where v is a �nite place dividing

the conductor N . We let F

v

be the residue �eld of the ring of integers O

v

of K

v

. Finally, we let

m

v

be the maximal ideal of O

v

. We let

A := E �

Spec(Q)

Spec(K

v

) and E := A ! Spec(O

v

):

5.10 Proposition. Let E

F

v

be E �

Spec(O

v

)

Spec(F

v

), i. e. the reduction of E at F

v

. We have

natural morphisms of Gal(K

un

v

=K

v

)-modules:

E

F

v

�

F

sep

v

�

 � E

�

O

un

v

�

�

�!E

�

K

un

v

�

:

This means that we can reduce points of E de�ned over an unrami�ed extension of K

v

. What is

relevant to us, is that it allows to reduce the study of Galois cohomology groups of E(K

un

v

) to the

study of the Galois cohomology groups of the reduction E

F

v

(F

sep

v

). The following proposition is

the �rst step in the proof of [Gr, Prop. 6.2 (1)] for �nite places v of bad reduction.

5.11 Proposition. The following natural morphism is injective:

H

1

(K

un

v

=K

v

; E)

p

�! H

1

(F

sep

v

=F

v

; E

F

v

)

p

:

Proof: Let

^

E be the formal group associated to E . We have an exact sequence:

0 �!

^

E(m

un

v

) �! E(O

un

v

) �! E(F

sep

v

) �! 0
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where m

un

v

is the maximal ideal of O

un

v

. Since p is chosen coprime to N , we have that multi-

plication by p is an isomorphism on

^

E(m

un

v

). In particular, H

1

(K

un

v

=K

v

;

^

E(m

un

v

))

p

= 0. This,

together with the remark that E(O

v

) �! E(F

v

) is surjective, implies the claim.

5.12 Remark. In the case of good reduction we have already seen this proof!

5.13 De�nition. We de�ne

E

0

F

v

�! Spec(F

v

) and �

v

= E

F

v

=E

0

F

v

as the connected component of E

F

v

and the group of connected components respectively.

5.14 Theorem. Any torsor under E

0

F

v

de�ned over F

v

admits an F

v

-valued point. In particu-

lar, it is trivial. Hence H

1

(F

sep

v

=F

v

; E

0

F

v

) = 0.

Proof: This is once more an application of Lang's theorem. See [Bo, Cor. 16.5(i)] for a proof.

5.15 Corollary. We have an injection:

0 �! H

1

(F

sep

v

=F

v

; E

F

v

)

p

�! H

1

(F

sep

v

=F

v

;�

v

)

p

:

Hence to �nish the proof of the proposition we need to check that d(n)

v

is trivial in the cohomoly

group H

1

(F

sep

v

=F

v

;�

v

)

p

. Let w be a place of K

n

over v. We recall that d(n)

v

is represented by

the cocycle

Gal(K

w

=K

v

) �! E(K

w

)


 7! �

(
�1)P

n

p

:

Using the de�nition of P

n

=

P

S

�(�

l

D

l

)y

n

, the equalities �

l

D

l

= l+1�Tr

l

and Tr

l

(y

n

) = a

l

y

n

l

and the fact that a

l

� l + 1 � 0 (mod p), we conclude that �

(
�1)P

n

p

is a combination of the

elements y

d

where d ranges among the divisors of n. To prove the triviality of d(n)

v

, which is

killed by p, we claim:

5.16 Lemma. For each divisor d of n the image in �

v

of the reduction of y

d

at v lies in a

subgroup of order prime to p.

6 Modular curves over Z.

The goal of this section is to prove the lemma. We can clearly suppose d = n. To prove

the lemma we need some information about the specialization of y

n

. Since y

n

is the image of

the Heegner point x

n

2 X

0

(N)(K

n

) via the modular parametrization, it is not surprising that

we need to study the specialization of Heegner points and the reduction of X

0

(N) at the given

place v of K.

6.1 The reduction of y

n

and w

N

(y

n

). By assumption n and N are coprime. We let l be the

prime of Z below v. The Heegner point y

n

is de�ned by N -isogeny

�:C=O

n

�! C=N

�1

;

where O

n

= Z + nO

K

is the order of conductor n and N is an ideal of O

n

of norm N . Let

�

N

be the complex conjugate of N . Then

�

_

:C=N

�1

�! C=

�

N

�1

N

�1

�

=

C=NO

n

�

=

C=O

n

7



is the image w

N

(y

n

) of y

n

via the Fricke involution on X

0

(N). Since N

�

N = N and, by

assumption, l splits in K we remark that either v divides N , but not

�

N or v divides

�

N , but

nor N . We recall that the elliptic curves C=N

�1

and C=

�

N

�1

can be de�ned over K

n

and have

potentially good reduction at w. Our discussion implies that either � or �

v

ee is separable in char

l (check it on tangent spaces).

6.2 A moduli de�nition of (an open of) X

0

(N). We want to study the reduction of y

n

and/or

w

N

(y

n

) at the place v. We need to de�ne a model of X

0

(N) over Z. To do this, we use the

moduli de�nition of X

0

(N) as in [Gh] instead of the more direct, but less workable de�nition

using the modular polynomial as in [Cl, Section 3]. We recall that over C the curve Y

0

(N)

(=X

0

(N) minus the cusps) was de�ned as the moduli space (coarsely) representing the moduli

functor which associates to a scheme S over C isomorphism classes of triples (A;A

0

; �), where

A and A

0

are elliptic curves over S and � :A ! A

0

is a cyclic isogeny. The word cyclic means

that the kernel of � is, locally on S, isomorphic to Z=NZ. See [Gh, Section 4]. Let us try to

extend this de�nition to Z.

6.2 De�nition. We de�ne

F

et

0

(N): Schemes �! Sets

to be the functor which associates to a scheme S isomorphism classes of triples (A;A

0

; �). Here

A and A

0

are curves over S with smooth sections 0 and 0

0

. By curves we mean proper and


at morphisms with one domensional �bers. Moreover, � :A ! A

0

is a morphism such that

�(0) = 0

0

. We require that the following properties hold. For any point s 2 S, let k(s) be an

algebraic closure of the residue �eld k(s) of s and let �s = Spec

�

k(s)

�

. For any scheme T over S,

denote by T

�s

the base change of T from S to �s. Then:

a) either (A

�s

; O

�s

) and (A

0

�s

; 0

0

�s

) are elliptic curves and the induced homomorphism of elliptic

curves over Spec

�

k(s)

�

�

�s

:A

�s

! A

0

�s

is an isogeny with kernel isomorphic to Z=NZ;

b) or A

�s

is an N -gone of P

1

�s

's, i. e. the normalization of A

�s

is isomorphic to P

1

�s

�Z=NZ and

A

�s

is obtained by glueing the in�nity section of the ith copy of P

1

�s

to the zero section of

the i+ 1th copy of P

1

�s

, while A

0

�s

is P

1

�s

with the sections 0 and 1 glued tranversally and �

is the natural morphism identifying A

0

�s

with A

�s

=(Z=NZ).

The result, which we take for granted from Katz-Mazur's book, is

6.2 Theorem. The functor F

et

0

(N) is coarsely represented by a smooth and geometrically

irreducible scheme Z

et

0

(N)! Spec(Z).

6.4 Remark. First of all you may wonder why we added those funny curves, called generalized

elliptic curves, satisfying condition b). The point is that the curve Z

et

0

(N)

Q

is the curve Y

0

(N)

Q

parametrizing elliptic curves plus the cusp 0. Infact such cusp extend to a section

0: Spec(Z) �! Z

et

0

(N):

We will not go into this. It follows from the theory of the Tate curve. See Katz-Mazur for

more on this. The theory of N�eron models should convince you that such objects appear as

degenerations of elliptic curves with a N -isogeny.
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6.5 Remark. You may wonder about the superscript et in the de�nition above. Consider

the case S = Spec(

�

F

l

), where l divides N . Let A and A

0

be elliptic curves. Insisting that

Ker(�)

�

=

Z=NZ forces the isogeny � to be separable (=�etale in this case). This excludes all

inseparable isogenies. This results in a de�nition of a moduli space where some pieces in char l

are missing. The problem is to �nd a good notion of cyclic isogenies in char l. This is extensively

studied in Katz-Mazur via the notion of a Drienfeld basis. Don't worry. We do not need that!

6.6 Remark. The curve resulting from our de�nition \ misses" some pieces in the character-

istics dividing N and all, but one, of the cusps. Still it will su�ce for our purposes!

6.7 Some special features of char. l, with l dividing N . Let k be the biggest integer such that

l

k

divides N . Let M := N=l

k

. We remark that M is coprime to l and hence Y

0

(M)

F

l

is de�ned

without \too much trouble". We have the following diagram:

Z

et

0

(M)

F

l

�! Z

et

0

(N)

F

l

�! Z

et

0

(M)

F

l

;

where on

�

F

l

-valued points the maps are de�ned as follows. Let � :A! A

0

be a point of Z

et

0

(M)

F

l

,

i. e. a cyclic isogeny of degree M between ordinary (generalized) elliptic curves. Then its image

via the map on the left is A

�

l

k

�

V

k

�!A

�

�!A

0

where V

k

:A

�

l

k

�

! A is the dual of the kth power

of Frobenius. We recall that A

�

l

k

�

is A�

Spec(

�

F

l

)

Spec(

�

F

l

) via the kth power of Frobenius acting

on

�

F

l

. Let A ! A

0

be an

�

F

l

-valued point of Z

et

0

(N)

F

l

. Then, its image via the map on the

right is A=Ker(V

k

) ! A

0

. In particular, the morphism Z

et

0

(M)

F

l

! Z

et

0

(M)

F

l

induced by

composing the two is the identity. If you accept the existence of Z

et

0

(M)

F

l

this proves the

existence of Z

et

0

(N)

F

p

. This reduces the question of the smoothness of Z

et

0

(N)

F

l

over Spec(F

l

)

and its irreducibility to the smoothness of Z

et

0

(M)

F

l

over Spec(F

l

) and its irreducibility. Since

l does not divide M this is easier.

6.8 The end of the proof. First of all we notice that either y

n

or w

N

(y

n

) de�ne O

w

-valued

points of Z

et

0

(N). Here O

w

is the ring of integers of K

w

. To prove this we use the modular

interpretation of Z

et

0

(N) and 6:1. Second we remark that, by the universal property of the N�eron

models, there exists a map

Z

et

0

(N)

O

v

�! E

v

;

where E

v

is the N�eron model of E over O

v

and its basechange to K

v

is induced from the modular

parametrization

Z

et

0

(N)

O

v

,�! X

0

(N)

K

v

'�K

v

��! E

K

v

:

The modular parametriztion sends the cusp 1 to the 0-section of E. We conclude that the

images of the specialization at v of y

n

(or w

N

(y

n

)) and 0 lie in the same conneced component

of the special �ber E

F

v

of the N�eron model. Hence the specialization of x

n

lie in the identity

component of E

F

v

up to translation by the specialization of �

�

'(0)� '(1)

�

. But '(0)� '(1)

belong to E(Q), it is a torsion point and E(Q)

p

= 0. Hence the conclusion.
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