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1 What and why: think globally, act locally

In geometry and analysis, we learn a great many things about spaces by studying them up
close, in the vicinity of a single point. As algebraic number theory emerged as a coherent
subject in the late 19th century, it was realized that much of this local thinking can be
transferred to number theory, with fruitful consequences. The key definition is due to Hensel:
for p a prime number, the p-adic absolute value | · |p on the field Q of rational numbers is
defined by setting |0|p = 0 and

∣∣∣pm r
s

∣∣∣
p
= p−m (m, r, s ∈ Z; gcd(r, p) = gcd(s, p) = 1).

The reason this is called an absolute value is that it satisfies the strong triangle inequality :
for all x, y ∈ Q,

|x± y|p ≤ max{|x|p, |y|p}.
This in particular implies the usual triangle inequality |x + y|p ≤ |x|p + |y|p. The strong
triangle inequality is also called the nonarchimedean triangle inequality, because it means
that the p-adic absolute value does not enjoy the usual archimedean property of positive
real numbers: for any x, y > 0, there exists a positive integer n for which nx > y. By
contrast, under the p-adic absolute value, the absolute values of integers are not unbounded;
rather, they are all of absolute value at most 1. (Notice also that the p-adic absolute value
is multiplicative: for all x, y ∈ Q, |xy|p = |x|p|y|p.)

Thanks to the triangle inequality, it makes sense to define the completion of Q with
respect to | · |p, denoted Qp and called the field of p-adic numbers. This can be done in much
the same way as one defines R as the completion of Q for the usual absolute value, except
that we can’t refer to the ordering on R. Here is an example of an explicit construction.

(a) Let R be the set of all Cauchy sequences x1, x2, . . . in Q for the absolute value | · |p.
That is, a sequence x1, x2, . . . belongs to R if and only if for each ǫ > 0, there exists
N > 0 such that whenever m,n ≥ N we have |xm − xn|p < ǫ.

(b) Notice that R is closed under term-by-term addition and multiplication, and so forms
a ring.

(c) Define an function |·|p on R by setting |x1, x2, . . . |p = limn→∞ |xn|p. This limit exists by
the triangle inequality (exercise) This function satisfies the strong triangle inequality
and multiplicativity.
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(d) The function | · |p on R is not really an absolute value because it takes many elements
of R to zero. In fact, the set p of elements of R which map to zero is a prime ideal. Put
Qp = R/p; this is again a ring, and | · |p induces a true absolute value on R. Moreover,
Qp is not just a ring but a field, because any nonzero element has nonzero p-adic
absolute value, so we can write down an inverse. Namely, if x1, x2, . . . is a sequence
representing a nonzero element of R, then x−1

1 , x−1
2 , . . . is also Cauchy (exercise).

One can more concretely think of elements of Qp as infinite sums

amp
m + am+1p

m+1 + · · · (am, am+1, · · · ∈ {0, . . . , p− 1}),

i.e., as numerals in base p whose expansions run infinitely far to the left. By contrast, real
numbers may be identified with numerals in base p whose expansions run infinitely far to
the right, provided that one disallows numerals in which after some point all of the digits
equal p− 1. No such issue arises here; in fact, the expression

(p− 1) + (p− 1)p+ (p− 1)p2 + · · ·

defines an extremely important p-adic number, namely −1. (Roughly speaking, this is how
your computer represents −1, using p = 2.)

If one takes the completion only of Z rather than Q, one obtains a subring of Qp denoted
Zp and called the ring of p-adic integers. It is not a field, but it is still a pretty simple
ring: it is a principal ideal domain with only a single prime ideal (p). In fact, every ideal
other than (0) has the form (pn) for some nonnegative integer n. One often views Zp as the
inverse limit of the rings Z/pnZ for n = 1, 2, . . . ; that is, an element of Zp may be viewed
as a sequence (x1, x2, . . . ) with xn ∈ Z/pnZ which is coherent, i.e., xn+1 maps to xn under
the “reduction modulo pn” map from Z/pn+1Z → Z/pnZ.

So why did Hensel do all of this? He realized that it could be extremely useful to be able
to do analysis on Qp just like one can do analysis on R, because a lot of subtleties about Q
disappear when you pass to the completion. For instance, you can talk about convergence
of power series: for instance, in Qp, the “identity”

1 + 2 + 22 + 23 + ... =
1

1− 2
= −1

of Euler becomes a true statement. An even more critical example for number theory is the
following special case of Hensel’s lemma: the fact that, say, 2 is a quadratic residue modulo
7 implies that 2 is also a quadratic residue modulo 7n for all positive integers n, and hence
that 2 is a perfect square in Zp (and hence in Qp). Quick proof by induction on n: if there
exists x ∈ Z with x2 ≡ 2 (mod 7n), then the equation (x + 7ny)2 ≡ 2 (mod 7n+1) in y can
be rewritten as x2 + 2 · 7n · y ≡ 2 (mod 7n+1) and as (x2 − 2)/7n + 2y ≡ 0 (mod 7), and
the latter obviously has a solution with y ∈ Z. (We’ll prove a more general statement of
Hensel’s lemma in the course.)

After Hensel introduced the p-adic numbers, it was discovered that they could be used
to formulate some powerful local-to-global statements. One of the most spectacular of these
is the Hasse-Minkowski theorem. (See Serre’s A Course in Arithmetic for a proof.)
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Theorem 1.1 (Hasse-Minkowski). Let n be a positive integer, and let A be an invertible
symmetric n× n matrix over Q. Define the quadratic form P (x1, . . . , xn) =

∑n
i,j=1Aijxixj.

Then the statement “there exists (x1, . . . , xn) ∈ F n−{0} for which P (x1, . . . , xn) = 0” holds
for the field F = Q if and only if it holds for each of the fields F = R,Q2,Q3, . . . .

Unfortunately, there are many natural instances of the local-to-global principle which do
not hold; a famous example of Selmer is the equation 3x3+4y3+5z3 = 0 which has nonzero
solutions over R,Q2,Q3, . . . but not over Q. Nonetheless, local-to-global methods are a
key tool in solving Diophantine equations; for instance, the relationship between Q and its
completions is essential to most methods of finding rational points on elliptic curves over Q.

In this course, we will focus on the arithmetic, and largely the Galois theory, of fields like
Qp. One reason for this is that the absolute Galois group of Qp (i.e., the Galois group of an
algebraic closure of Qp) may be viewed as a subgroup of the absolute Galois group of Q, and
much of what we understand about the latter is gathered from the former. This has to do
with the fact that while it is believed that every finite group occurs as the Galois group of
some finite extension of Q (the inverse Galois problem), we will prove that the Galois groups
of finite extensions of Qp are all solvable groups, and in fact have a fairly special form.

An explicit instance of the principle that Galois theory over Q is best understood via the
Qp is class field theory : the abelianization of the absolute Galois group of any number field
K (i.e., the Galois group of the maximal abelian extension of K) can be described explicitly
using a recipe cooked up from the completions of K (which are finite extensions of R and
Qp, which we’ll describe later). To prove class field theory, one first proves local class field
theory, which is a description of the abelianization of the absolute Galois group of a finite
extension of Qp. As you might imagine, this is much easier! Stating and proving local class
field theory will provide an excuse to introduce many important tools in number theory, such
as Galois cohomology.

Exercises

1. Prove that if x1, x2, . . . is a Cauchy sequence with respect to | · |p, then limn→∞ |xn|p
exists.

2. Prove that if x1, x2, . . . is a Cauchy sequence with respect to |·|p representing a nonzero
element of Qp, then x

−1
1 , x−1

2 , . . . is also Cauchy.

3. I mentioned in class that the Hasse-Minkowski theorem provides a criterion for check-
ing for the existence of a zero of a quadratic form which involves a finite amount of
computation. Here is an example of this. Let A,B,C be pairwise coprime integers,
and put P (x, y, z) = Ax2+By2+Cz2. Prove that for any p not dividing 2ABC, there
exist x, y, z ∈ Qp not all zero for which P (x, y, z) = 0. (Hint: for p ≡ 1 (mod 4), find a
solution with xyz = 0 using the special case of Hensel’s lemma introduced in class. For
p ≡ 3 (mod 4), use the same argument to handle all cases but P (x, y, z) = x2+y2+z2,
for which you know solutions over Q.)

3



2 Discrete valuation rings and fields

Warning: in this course, a ring will always be a commutative ring with unit unless I say
otherwise (which I don’t think I ever will).

A discrete valuation ring (DVR, not to be confused with TiVo) is a principal ideal domain
with exactly one nonzero prime ideal. For example, the ring Z(p) consisting of all rational
numbers r/s with s not divisible by p is a DVR. This is not to be confused with the ring Zp
of p-adic integers, although that is also a DVR. Another example is the formal power series
ring KJtK over a field K.

Let’s take a moment to gather some properties from this definition. Let R be a DVR.
Since R has a nonzero prime ideal, it can’t be either the zero ring or a field. It must then
have a maximal ideal, which cannot be the zero ideal, but is definitely a prime ideal. Hence
our one nonzero prime ideal must be maximal; call it I. The ideal I must be principal; let π
be a generator. Since I is the only maximal ideal of R, R is a local ring; that is, any element
of R not in I is a unit. Therefore, if x ∈ R is not a unit, then x is divisible by π. Similarly, if
x is divisible by π, then either x/π is a unit or x is divisible by π2 and so on. This means that
every element of x is either of the form πmu for some nonnegative integer m and some unit
u, or divisible by every positive power of π. But only 0 fits the latter description: otherwise,
the intersection (π) ∩ (π2) ∩ (π3) ∩ · · · would be a nonzero prime ideal (exercise).

Since R was assumed to be an integral domain, it has a fraction field K. Each nonzero
element of K can be written as πmu for some m ∈ Z and some unit u in R. We define
the valuation function v : K× → Z to send πmu to m. (By convention, v(0) = +∞.) This
function behaves like the logarithm of a nonarchimedean absolute value, in that it satisfies
the following properties.

(a) For x ∈ K, v(x) = +∞ if and only if x = 0.

(b) For x, y ∈ K, v(x+ y) ≥ min{v(x), v(y)}.

(c) For x, y ∈ K, v(xy) = v(x) + v(y).

Conversely, given a surjective map v : K → Z∪{+∞} satisfying these conditions, the subset
R = {x ∈ K : v(x) ≥ 0} forms a discrete valuation ring.

For those who like commutative algebra, here is another characterization of discrete
valuation rings. See Serre, §1.2 for a proof.

Proposition 2.1. A ring R is a discrete valuation ring if and only if it is a noetherian local
ring whose maximal ideal is generated by an element which is not nilpotent.

One of the basic tools for studying valuations is the theory of Newton polygons. Let R,K
be as above, and let P ∈ K[T ] be a polynomial. The Newton polygon of P is constructed
as follows. Write P =

∑
i PiT

i. For each index i, plot the point (−i, v(Pi)) in the xy-plane.
The Newton polygon is then defined as the boundary of the lower convex hull of these points.
In other words, it is the graph of a convex (“holds water”) function that lies below all of the
drawn points but otherwise is as high as possible.
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An example might help make this clear. Take K = Q2 and P = T 3 + 6T 2 + 10T + 8.
Here’s the Newton polygon:

(−3, 0)

(−2, 1)

(−1, 1)

(0, 3)

The relevant data from the polygon are the slopes that occur and their multiplicities (the
horizontal widths of the corresponding segments). In the above example, the slope 1/2 occurs
with multiplicity 2 and the slope 2 occurs with multiplicity 1.

The Newton polygon has the following multiplicativity property.

Proposition 2.2. If P = QR, then the Newton polygon of P is the union of the Newton
polygons of Q and R. This means that for each slope s, the multiplicity of s as a slope of P
is the sum of the multiplicities of s as a slope of Q and R.

For example, (T +2)2 = T 2+4T +4 has only the slope 1 with multiplicity 2. For another
example,

T 3 + 6T 2 + 10T + 8 = (T 2 + 2T + 2)(T + 4)

and the two factors on the right account for the slopes 1/2 and 2, respectively.
In case P splits completely into linear factors, this property tells us that the slopes of

the Newton polygon compute the valuations of the roots. We will use Newton polygons a
bit later to extend the valuation function from a local field to a finite extension.

To prove Proposition 2.2, we use the following definition. For s ∈ R, let vs : K[T ] →
R ∪ {+∞} be the function taking P =

∑
i Pi to mini{v(Pi) + si}. This function has the

evident properties that:

(a) vs(P ) = +∞ if and only if P = 0;
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(b) vs(P +Q) ≥ min{vs(P ), vs(Q)}.
It also has the following geometric interpretation: it is the y-intercept of the supporting line
of slope s to the Newton polygon of P . (Namely, we can find this supporting line by drawing
a line of slope s through each point (−i, v(Pi)) and finding the one that hits the y-axis at
the lowest point.)

Proposition 2.2 now follows from the following lemma.

Lemma 2.3. The function vs has the property that vs(PQ) = vs(P ) + vs(Q). (That is, vs
is a valuation Moreover, if imin, imax are the minimum and maximum indices i, respectively,
for which v(Pi)+ si achieves its minimum value, and jmin, jmax are minimum and maximum
indices j, respectively, for which v(Qj) + sj achieves its minimum value, then kmin = imin +
jmin, kmax = imax + jmax are the minimum and maximum indices k, respectively, for which
v((PQ)k) + sk achieves its minimum value.

Proof. For any k, we have (PQ)k =
∑

i+j=k PiQj. Consequently,

v((PQ)k) + sk ≥ min
i+j=k

{v(Pi) + v(Qj) + s(i+ j)} ≥ vs(P ) + vs(Q).

If k = kmin, then the sum
∑

i+j=k PiQj consists of the unique term with i = imin and j = jmin,
plus some terms with i < imin, plus some terms with j < jmin. Any term of the second type
has the property that

v(Pi) + is > vs(P ), v(Qj) + js ≥ vs(Q),

so v(PiQj) > v(Pimin
Qjmin

). Likewise for the third type. This means that (PQ)kmin
consists

of Pimin
Qjmin

plus a bunch of terms of larger valuation, so v((PQ)kmin
) = v(Pimin

Qjmin
) and so

v((PQ)kmin
)+ skmin = vs(P )+ vs(Q). Similarly for k = kmax. If k < kmin, then every term in

the sum
∑

i+j=k PiQj has either i < imin or j < jmin or both, so v((PQ)k)+sk > vs(P )+vs(Q).
Likewise for k > kmax.

Exercises

1. Let R be a noetherian domain. Prove that for any x ∈ R, the intersection (x)∩(x2)∩· · ·
is a prime ideal of R.

2. Use Newton polygons to prove Eisenstein’s irreducibility criterion: let P ∈ Z[T ] be
a monic polynomial. Suppose for some prime number p, all of the coefficients of P
except the leading coefficient are divisible by p, and the constant coefficient is not
divisible by p2. Prove that P is irreducible as a polynomial over Q (and even over Qp).
Polynomials for which this criterion holds, called Eisenstein polynomials, play a key
role in the construction of local fields; see for instance the next exercise.

3. Check that the polynomial
(T + 1)p − 1

T
satisfies the Eisenstein criterion.
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3 Hensel’s lemma

Throughout this lecture, let K be the fraction field of a discrete valuation ring R with
maximal ideal I. We will assume that K is a local field, meaning that R is complete for
the adic topology defined by its maximal ideal. In other words, R and K are complete with
respect to the absolute value |x| = e−v(x), for v : K → Z ∪ {+∞} the valuation function.

We are going to investigate Hensel’s fundamental observations about factoring polyno-
mials over local fields. There are several of these, all sometimes called Hensel’s lemma.

Proposition 3.1 (Hensel’s lemma, version 1). Let P ∈ R[T ] be a polynomial. Suppose that
z ∈ R has the property that P (z) ∈ I but P ′(z) /∈ I. Then there exists a unique r ∈ R with
z ≡ r (mod I) and P (r) = 0.

Proof. We construct r using Newton’s method (also called the Newton-Raphson method)
from one-variable calculus. Define a sequence r0, r1, . . . as follows. First put r0 = z. Given
rn, we define

rn+1 = rn −
P (rn)

P ′(rn)
.

We will prove by induction on n that:

(a) P (rn) ≡ 0 (mod I2
n

) and P ′(rn) 6≡ 0 (mod I);

(b) rn+1 ≡ rn (mod I2
n

).

As the base case, we have (a) for n = 0 by definition. For any given n, having (a) implies (b),
so to check the induction it is enough to assume (a) and (b) for a given n and then deduce
the next case of (a). Given (a) and (b), it is clear that P ′(rn+1) ≡ P ′(rn) 6≡ 0 (mod I). On
the other hand, by Taylor’s approximation we have

P (rn+1) ≡ P (rn) + P ′(rn)(rn+1 − rn) = 0 (mod (rn+1 − rn)
2).

Since rn+1 − rn belongs to I2
n

, this gives a congruence modulo I2
n+1

.
The sequence r0, r1, . . . converges to some r ∈ R for which P (r) ≡ 0 (mod I2

n

) for all
n, and so P (r) = 0. To prove uniqueness, suppose r′ ∈ R also satisfies z ≡ r′ (mod I)
and P (r′) = 0. Again by Taylor’s approximation, we have P (r′) ≡ P (r) + P ′(r)(r′ − r)
(mod (r′ − r)2), which means that P ′(r)(r′ − r) ≡ 0 (mod (r − r′)2). However, we have a
problem: P ′(r) is a unit, so the congruence would force r′ − r to be divisible by its square.
This is only possible if r′ − r has valuation either 0 or +∞, i.e., if r − r′ is either zero or a
unit. Since r ≡ r′ (mod I), r − r′ can’t be a unit, so it is zero.

The fact that we got from a congruence modulo I2
n

to a congruence modulo I2
n+1

was
not really necessary for proving the proposition; it would have been enough to get from In

to In+1. However, just as happens over the real numbers, the exponential convergence of
Newton’s method is very useful when finding roots of p-adic polynomials on a computer.

When the condition P ′(z) /∈ I fails to be satisfied, one needs a slightly better approxima-
tion in order for Newton’s method to converge to a root. This amounts to a second, slightly
stronger form of Hensel’s lemma.
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Proposition 3.2 (Hensel’s lemma, version 2). Let P ∈ R[T ] be a polynomial. Suppose that
z ∈ R has the property that P (z)/P ′(z)2 ∈ I. Then there exists a unique r ∈ R with z ≡ r
(mod P (z)/P ′(z)) and P (r) = 0.

Proof. Exercise.

Here is a somewhat different form of Hensel’s lemma. It can be derived from the first
form, but I’ll give a separate proof instead.

Proposition 3.3 (Hensel’s lemma, version 3). Let P ∈ R[T ] be a monic polynomial, and
suppose that Q1, S1 ∈ R[T ] are monic polynomials for which P ≡ Q1S1 (mod I). (That is,
P − Q1S1 has all coefficients in I.) Suppose also that Q1 and S1 are relatively prime as
polynomials over the field R/I. Then there exist unique monic polynomials Q,S congruent
to Q1, S1 modulo I for which P = QS.

Proof. This time around, I’ll be a bit less verbose (and I’ll skip the uniqueness). I’ll just argue
that given a congruence P ≡ QnSn (mod In) with Qn and Sn monic and relatively prime as
polynomials over R/I, I can produce another congruence P ≡ Qn+1Sn+1 (mod In+1) with
Qn+1 ≡ Qn (mod In) and Sn+1 ≡ Sn (mod In).

Let π be a uniformizer of R. The plan now is to put Qn+1 = Qn + πnXn and Sn+1 =
Sn + πnYn for some well-chosen polynomials Xn and Yn. To avoid changing the degree or
leading coefficient, we insist that deg(Xn) < deg(Qn) and deg(Yn) < deg(Sn). The condition
we’d like to achieve is that

P ≡ (Qn + πnXn)(Sn + πnYn) (mod πn+1);

note that this can be rewritten as

(P −QnSn) ≡ πn(XnSn + YnQn) (mod πn+1)

since 2n ≥ n + 1. To do this, put Zn = (P − QnSn)/π
n. The relatively prime condition

modulo I means that I can produce polynomials An, Bn with AnQn + BnSn ≡ 1 (mod I).
Now let Xn be the remainder upon dividing ZnBn by Qn, and then solve for Yn.

Finally, here is yet another form of Hensel’s lemma which I’ll need to extend valuations
to finite extensions of K. By now, you should have the basic idea, so I can leave even more
details as an exercise.

Proposition 3.4 (Hensel’s lemma, version 4). Let P ∈ K[T ] be a polynomial whose Newton
polygon contains more than one distinct slope. Then P is reducible.

Proof. This is most easily proved using the fact (Proposition 2.2) that for any s ∈ R, the
function vs taking P =

∑
i Pi to mini{v(Pi) + si} is a (not necessarily discrete) valuation

on K[T ]. Given this, choose an index i for which (−i, v(Pi)) is a vertex of the Newton
polygon between the segments of slope s1 and s2. Choose any s in the open interval (s1, s2).
The idea will be to construct a sequence of approximate factorizations QnSn of P for which
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vs(P − QnSn) keeps decreasing. We start by taking Q0 = Pi, S0 = T i. Given Qn and Sn,
split P −QnSn as a sum PiXn + T iYn where deg(Xn) < i. Then define

Qn+1 = Qn + Yn, Sn+1 = Sn +Xn.

We claim that this converges to a good factorization; we leave this as an exercise.

Corollary 3.5. Any irreducible polynomial in K[T ] has only one slope in its Newton polygon
(with some multiplicity).

Beware that this form of Hensel’s lemma does not allow you to necessary separate two
equal slopes from each other. For instance, the polynomial

P (T ) = T 2 + 1

over Q3 is irreducible even though its Newton polygon consists of the slope 0 with multiplicity
2, which can be written as the union of two polygons each having slope 0 with multiplicity 1.
The irreducibility can be seen by noting that any factorization corresponds to a factorization
over Z3 (Gauss’s lemma; see exercises) and hence to one over F3, but the polynomial modulo
3 is irreducible because −1 is not a quadratic residue modulo 3.

Stylistic note: some authors prefer to derive Hensel’s lemma using the contraction map-
ping theorem (as in the usual proof of the implicit function theorem). That usually gives
shorter proofs, but I find the arguments using sequences of approximations a bit easier to
digest the first time around.

Exercises

1. Prove that a polynomial in R[T ] is irreducible if and only if it is irreducible in K[T ].
(This is sometimes called Gauss’s lemma because Gauss made the same observation
for R = Z.)

2. Prove version 2 of Hensel’s lemma. Then use it to explain why every integer congruent
to 1 modulo 8 is a perfect square in Q2.

3. Finish the proof of version 4 of Hensel’s lemma.

4 Extending valuations

Again, let R be a discrete valuation ring with fraction field K and valuation function v.

Proposition 4.1. Suppose that K is complete. Then for any finite extension L of K, there
is a unique way to extend the valuation function on K to a valuation function on L taking
values not in Z but in 1

N
Z for some positive integer N .
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For example, for K = Qp and L = Qp(
√
p), the extended valuation function will take p

to 1/2. We can always take N = [L : K], the degree of L over K; that will be evident from
the uniqueness proof.

Proof. Let’s first check the uniqueness property using Newton polygons. Take any x ∈ L,
and let Q ∈ K[T ] be the minimal polynomial of x. Since Q is irreducible, by one of the
forms of Hensel’s lemma, it has only one slope s in its Newton polygon. This means that
the extended valuation must take x to s, or else T − x could not be a factor of Q in L[T ].
(Note that the degree of Q is the degree [K(x) : K], which divides [L : K].)

Now let’s turn around and use the same thinking to construct the extended valuation.
For each x ∈ L, define v(x) to be the unique slope in the Newton polygon of the minimal
polynomial of x. This definitely agrees with the original valuation for x ∈ K. To check
that v(x + y) ≥ min{v(x), v(y)}, it is enough to produce a polynomial with x + y as a
root having all slopes in its Newton polygon at least v(x) + v(y). To do this, let P and
Q be the minimal polynomials of x and y, respectively. By Hensel’s lemma, version 4
(Proposition 3.4), the polynomials P and Q have only one slope each, say s and t. Put
m = deg(P ) and n = deg(Q), and write P =

∑
i PiT

i and Q =
∑

j QjT
j. We then have the

following homogeneity property:

v(Pm−i) ≥ si, v(Qn−j) ≥ tj.

Over an algebraic closure of F , we may factor P = (T − x1) · · · (T − xm) and Q = (T −
y1) · · · (T − yn). The polynomial

A(T ) =
m∏

i=1

n∏

j=1

(T − xi − yj)

then has coefficients in F and has x+y as a root. The coefficient of Tmn−k in A(T ) is a sym-
metric polynomial in the xi and in the yj of total degree k, so it can be written as a polynomial
in the Pi and Qj with integer coefficients. For each term Pm−i1Pm−i2 · · ·Qn−j1Qn−j2 . . . , the
sum of the i’s and j’s is k, so the valuation is at least min{s, t}k. But now we can turn
around and say that the slopes of A are all at least min{s, t}, because the line through the
point (−mn, 0) of slope min{s, t} lies on or below all of the points (−k, v(Ak)).

To check that v(xy) = v(x) + v(y), we make a similar argument using the polynomial

M(T ) =
m∏

i=1

n∏

j=1

(T − xiyj).

This time, the coefficient of Tmn−k in M(T ) is a symmetric polynomial of degree k in the xi
and separately of degree k in the yj, so again it can be written as a polynomial in the Pi and
Qj with integer coefficients. For each term Pm−i1Pm−i2 · · ·Qn−j1Qn−j2 . . . , the sum of the
i-indices is k and the sum of the j-indices is also k, so the valuation is at least (s+ t)k. That
means that the slopes ofM are all at least s+ t. But we have one extra piece of information:
the final coefficient is ±P n

0 Q
m
0 , whose valuation is exactly (s+ t)mn. So the slopes of M are

forced to be exactly equal to s+ t, completing the argument.
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Warning: we made heavy use of the completeness of K here. If I only assume that K
is the fraction field of a discrete valuation ring, there may be multiple ways to extend the
valuation to a finite extension (see exercises). This is very closely related to splitting of
primes in extensions of number fields, but we’ll come back to that connection a bit later.

One fact I forgot to mention earlier...

Proposition 4.2. Let L be a finite extension of K. Then L is also complete with respect to
the unique extension of the valuation on K.

Proof. It is convenient to prove something stronger. Let V be any finite-dimensional vector
space over K equipped with a function vV : V → 1

N
Z ∪ {+∞} for some positive integer N

satisfying the following conditions.

(a) For x ∈ V , vV (x) = +∞ if and only if x = 0.

(b) For x, y ∈ V , vV (x+ y) ≥ min{vN(x), vV (y)}.

(c) For x ∈ V and c ∈ K, vV (cx) = v(c) + vV (x).

We will show that V is complete, i.e., any Cauchy sequence with respect to vV has a limit.
This includes the desired result, but it has the advantage that I can induct on the dimension
of V (which provides more intermediate steps).

The case dim(V ) = 1 is clear: we may identify V with K, and then vV (x) = vV (1)+ v(x)
for all x ∈ K. If dim(V ) > 1, choose any nonzero x ∈ V , and let W be the quotient vector
space V/Kx. We can define a new valuation vW on W by taking vW (y) to be the maximum
of vV (z) over all z ∈ V mapping to y in W . Why does the maximum exist? If it didn’t, then
since vV takes values in a discrete group, we’d have some elements z0, z1, z2, · · · ∈ V having
the same image in W with vV (zi) → +∞ as i→ ∞. But zi+1 − zi = cix for some ci ∈ K, so
v(ci) → ∞ and so the sum

∑
i ci converges to a limit c. Then z0 + cx would be an element

of V of infinite valuation, so the maximum exists after all (and happens to be infinite), and
incidentally y = 0.

By the induction hypothesis, W is complete. If x1, x2, · · · is a Cauchy sequence in V ,
then the images of the xi in W must converge to some limit y. For each i, choose zi ∈ V
lifting xi − y with vV (zi) = vW (xi − y); these converge to zero, so the sequence xi − zi is
again Cauchy. But these terms all map to y in V , so for any one lift z of y from W to V , I
can write xi − zi = z + cix for some ci ∈ K, and now the ci form a Cauchy sequence. That
sequence has a limit c, so the xi converge to the limit z + cx.

Exercises

1. Put K = Qp, L = Qp[T ]/(T
2 − p). Prove that the extension of the p-adic valuation

to L takes a + bT to min{vp(a), 12 + vp(b)}; in particular, it does not take values in
Z ∪ {+∞}. (Hint: by the uniqueness part of Proposition 4.1, it is enough to check
that this satisfies the properties of a valuation.)
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2. Put K = Q3, L = Q3[T ]/(T
2 + 1). Prove that the extension of the p-adic valuation to

L takes a+ bT to min{v3(a), v3(b)}; in particular, it again takes values in Z ∪ {+∞}.
(Hint: same hint as the previous exercise.)

3. Prove that the 5-adic valuation onQ can be extended in two different ways toQ[T ]/(T 2+
1). (Hint: construct an extension in which 2 + i has positive valuation, then observe
that this valuation is not invariant under complex conjugation because 2− i does not
have positive valuation.)

5 Structure of complete discrete valuation rings, I: Equal

characteristic case

Once again, let R be a complete discrete valuation ring with fraction field K. Let k denote
the residue field of R, i.e., the quotient of R by its maximal ideal I. Choose a uniformizer π.

Lemma 5.1. Let S be any set of coset representatives of k in R. Then every element x of
R can be written uniquely as a convergent sum

∑∞
n=0 snπ

n with each sn belonging to S.

Proof. By the definition of S, there is a unique choice of s0 ∈ S congruent to x modulo π.
There is also a unique choice of s1 ∈ S congruent to (x− s0)/π modulo π, and so forth.

For example, as we’ve already seen, every element of Zp can be written as a convergent
sum s0 + s1p+ s2p

2 + · · · with si ∈ {0, . . . , p− 1}. We will see an arguably better choice for
the “digits” later in this section.

Before stating the next result, let me toss in a quick reminder from Galois theory. Recall
that a finite extensions of fields E/F is separable if the trace pairing E×E → F taking (x, y)
to TraceE/F (xy) (the trace of multiplication by xy viewed as an F -linear endomorphism of
E) is nondegenerate. By the primitive element theorem, this happens if and only if we
can write E = F [T ]/(P (T )) for some polynomial P (T ) which is separable, i.e., for which
gcd(P (T ), P ′(T )) = 1. This condition is automatic in characteristic 0. Also, a field F is
perfect if every finite extension of it is separable; again, this is automatic in characteristic
0. In characteristic p, this happens if and only if the p-power endomorphism of F (the
Frobenius map) is surjective (and hence bijective, since a homomorphism of fields cannot
have a nonzero kernel). For instance, any finite field is perfect.

Proposition 5.2. Suppose that K and k are of the same characteristic, and k is perfect.
Then there is an isomorphism kJT K ∼= R taking T to π and inducing the identity map on
residue fields. If k is of characteristic p > 0, then the isomorphism is unique.

Recall that k is defined as a quotient of R, not a subring. However, if we had an
isomorphism of the desired form, this would provide a copy of k sitting inside R, since k sits
as a subring in kJT K. Conversely, if we have a homomorphism f : k → R such that the map
k → R → k is an isomorphism, we get an isomorphism kJT K ∼= R taking s0 + s1T + · · · to
f(s0) + f(s1)π + · · · . We thus need to prove the following.
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Lemma 5.3. Suppose that K and k are of the same characteristic, and k is perfect. Then
there is a homomorphism k → R for which the composition k → R → k is the identity map.
If k is of characteristic p > 0, then the homomorphism is unique.

Proof in characteristic 0. We first produce a subfield F of k and a map F → R such that
the composition F → R → k coincides with the embedding of F into k. In fact, we may
take F = Q: this works because every nonzero element of Z has nonzero image under the
map R → k, so must be a unit in R.

Suppose I have such a subfield F (not necessarily equal to Q). I claim that if F 6= k, then
I can extend my map F → R to a map E → R for some subfield E of k strictly containing
F . To see this, pick any x ∈ k − F and put E = F (x).

(a) If x is transcendental over F , then any choice of an element y ∈ R lifting x defines
a map E → R. That is because the map F [T ] → R sending T to y takes every
nonzero element of F [T ] to an element of R of valuation zero (since the composition
F [T ] → R → E is injective), so we get a map F (y) → R.

(b) If x is algebraic over F , then the minimal polynomial P (T ) of x over F is separable
because we are in characteristic 0. Use the map F → R to map P (T ) to a polynomial
in R[T ]. Then by Hensel’s lemma, version 1, there is a unique root y of P in R reducing
to x modulo π. We can then map E to R by sending x to y.

Now use your favorite equivalent of the axiom of choice (e.g., Zorn’s lemma or transfinite
induction) to put together an embedding of all of k into R.

The case of positive characteristic is made tricky by the fact that in situation (b), we
might hit an inseparable polynomial. This can’t happen in case k is finite, since then every
subfield of k is perfect. It is possible to get around this with some work, even if k itself is
imperfect; this observation is due to Cohen and forms part of the Cohen structure theorem.
However, I’ll stick to the perfect case, in which case there is a uniqueness argument which
locks the situation down pretty well (no axiom of choice required!).

Proof of uniqueness in characteristic p. Suppose f1, f2 : k → R are two homomorphisms of
the desired form. Then for any x ∈ k, f1(x)− f2(x) is divisible by π. However, we can write
x = yp for some y ∈ k since k is perfect, and then because we are in characteristic p,

f1(x)− f2(x) = f1(y
p)− f2(y

p) = f1(y)
p − f2(y)

p = (f1(y)− f2(y))
p

is divisible not just by π but by πp. By similar reasoning, f1(x) − f2(x) is divisible by πp
n

for any nonnegative integer n, and so must be zero.

The existence is obtained by turning this around in the following way.

Proof of existence in characteristic p. Let f0 : k → R be any map, not necessarily a homo-
morphism, such that k → R → k is the identity map. For n = 1, 2, . . . , define

fn(x) = f0(x
p−n)p

n

.
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Since f0(x
p−n−1

)p ≡ f0(x
p−n) mod π, we have

fn+1(x) ≡ fn(x) mod πp
n

.

Thus the sequence f0(x), f1(x), . . . converges to a limit f(x). By a similar argument starting
from the congruences

f0(x
p−n−1

)p + f0(y
pn−1

)p ≡ f0((x+ y)p
−n

) mod π,

f0(x
p−n−1

)pf0(y
pn−1

)p ≡ f0((xy)
p−n) mod π,

we find that f is a homomorphism.

6 Structure of complete discrete valuation rings, II:

Mixed characteristic case

We next consider the case where K and k are of different characteristics. This can only
happen when K is of characteristic 0 and k is of characteristic p > 0. The typical example
is of course R = Zp, but we can make plenty of other examples by taking extensions of Qp.
Again, we get best results if we assume k is perfect, which include the case of most interest
to us (when k is finite).

The idea here is to rerun the previous argument in the case of equal characteristic p and
see what happens. The answer is quite interesting!

Lemma 6.1. Assume that k is perfect of characteristic p (but K need not be of characteristic
p). Pick any x ∈ k. For n = 0, 1, . . . , choose yn ∈ R reducing to xp

−n

modulo π. Then the
sequence

y0, y
p
1, y

p2

2 , . . .

is convergent in R, and its limit depends only on x and not on the yn.

Proof. We start with the observation that if a ≡ b (mod πm), then ap ≡ bp (mod πm+1)
because ap − bp = (a− b)(ap−1 + · · · + bp−1) and the second term is congruent modulo π to
the sum of p identical terms, and hence to zero. Consequently, from the fact that ypn+1 ≡ yn
(mod π), we get that

yp
n+1

n+1 ≡ yp
n

n (mod πn).

This gives the convergence. To see that the limit depends only on x, choose another element
zn ∈ R reducing to xp

−n

modulo π. Then yn ≡ zn (mod π), so

yp
n

n ≡ zp
n

n (mod πn).

Hence the new sequence gives the same limit as the old one.

The limit in the previous lemma is denoted [x] and called the Teichmüller lift of x.
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Lemma 6.2. The Teichmüller map [·] : k → R is multiplicative: for x, y ∈ k, [xy] = [x][y].

It would be too much to ask for the Teichmüller map to also be additive, though, because
R is not of characteristic p: the sum [1] + · · · + [1] with p terms cannot possibly equal
[1 + · · ·+ 1] = 0.

Proof. Take an, bn ∈ R reducing to xp
−n

, yp
−n

, respectively. Then anbn reduces to (xy)p
−n

,
so the sequences ap

n

n , b
pn

n , (anbn)
pn converge to [x], [y], [xy], respectively.

For example, for x ∈ Fp, the Teichmüller lift [x] ∈ Zp satisfies [x]p = [xp] = [x]. For x
nonzero, this means that [x] is a (p− 1)-st root of unity.

Lemma 6.3. For x ∈ k, the Teichmüller lift [x] is the unique lift of x to R having a pn-th
root in R for every positive integer n.

Proof. On one hand, [x] has the pn-th root [xp
−n

] for every positive integer n. On the other

hand, if y is a lift of x having a pn-th root yn for each n, then the sequence y0, y
p
1, y

p2

2 , . . .
converges to both y (since it’s a constant sequence) and [x], so the two coincide.

Corollary 6.4. Suppose that p generates the maximal ideal of R. Then there is at most one
automorphism of R lifting any given automorphism of k. For instance, the identity map is
the only automorphism of R which acts as the identity modulo π.

Proof. Let τ1, τ2 be two automorphisms of R which have the same effect modulo π. By the
previous lemma, for any x ∈ k, we have τ1([x]) = [τ1(x)] = [τ2(x)] = τ2([x]) (since τ1([x]) and
τ2([x]) both have pn-th roots in R for any n). Also, τ1(p) = τ2(p) = p. Since p generates the
maximal ideal of R, we can write every element x of R as a power series in p with coefficients
among the Teichmüller lifts, from which it follows that τ1(x) = τ2(x).

This gives the uniqueness part of the following theorem.

Theorem 6.5 (Witt). For any perfect field k of characteristic p, there exists a unique (up to
unique isomorphism) complete discrete valuation ring R with maximal ideal (p) and residue
field k. Moreover, any homomorphism of fields lifts uniquely to a homomorphism of the
corresponding complete DVRs.

The existence part is less obvious; it amounts to giving an analogue of the construction
of the formal power series ring over k. However, it must be intricate enough so that we can,
for instance, stuff in Fp and get back Zp. We should also be able to stuff in other finite
fields and get back interesting extensions of Zp (more precisely, the unramified extensions,
but more on that later).

The idea is to think about how to express the arithmetic operations of, say, Zp in terms
of Teichmüller lifts. If we write x = [x0]+[x1]p+[x2]p

2+ · · · and y = [y0]+[y1]p+[y2]p
2+ · · ·

with the xi and yj in Fp, and then write x+ y = [z0] + [z1]p+ [z2]p
2 + · · · , then there must

be some way to express zk in terms of the xi and yj. In fact, zk had better only depend on
x0, . . . , xk and y0, . . . , yk and not any higher terms, since the reduction of z modulo pk+1 is
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determined by the reductions of x and y modulo pk+1. The first step is obvious: we must
have z0 = x0 + y0. But already the second step is not so clear!

Here is how to recover the expressions for the higher zk’s. Write

[z1] = (x+y−[z0])/p = ([x0]+[x1]p+[y0]+[y1]p−[z0])/p = [x1]+[y1]+
1

p
([x0]+[y0]−[x0+y0]).

Then note that since [x0]+[y0] reduces to x0+y0 modulo p, ([x
1/p
0 ]+[y

1/p
0 ])p must be congruent

to [z0] modulo p2 from the definition of the Teichmüller lift). Therefore,

[z1] ≡ [x1]+[y1]+
1

p
([x

1/p
0 ]+[y

1/p
0 ]−([x

1/p
0 ]+[y

1/p
0 ])p) = [x1]+[y1]−P ([x1/p0 ], [y

1/p
0 ]) (mod p),

where P (T, U) is the integer polynomial ((T +U)p − T p −Up)/p. Since a Teichmüller lift is
determined by its reduction modulo p, we conclude that

z1 = x1 + y1 − P (x
1/p
0 , y

1/p
0 ).

Of course I don’t really need the p-th roots in this example, because every element of Fp
is already its own p-th root. However, leaving them in shows that a similar recipe works
whenever the residue field k is perfect.

You could in principle run the same process for the higher zk, or even do something
similar for multiplication instead of addition. However, it’s not so easy to guess the pattern
of the resulting polynomials. The amazing discovery of Witt is that there is a much simpler
recipe for generating the formulas to describe arithmetic in terms of Teichmüller lifts.

For any ring R, let W (R) be the set of infinite sequences (x0, x1, . . . ) with entries in R.
(We will call these sequences Witt vectors once we give them a bit of structure.) Define the
ghost map w on sequences by mapping (x0, x1, . . . ) to (w0, w1, . . . ) with

w0 = x0, w1 = xp0 + px1, . . . , wn =
n∑

i=0

pixp
n−i

i , . . . .

If p happens to be a unit in R, then the ghost map is a bijection, but otherwise not. The
target is again the set of infinite sequences with entries in R, but I want to think of that as
a ring using term-by-term addition and multiplication, whereas the Witt vectors will pick
up rather different operations.

Theorem 6.6 (Witt). There is a unique way to equip the set W (R) with a ring structure
subject to the following conditions.

(a) The construction is functorial in R. By that, I mean that whenever R → S is a ring
homomorphism, so is the map W (R) → W (S) given by applying R → S term-by-term.

(b) The ghost map w is always a ring homomorphism.

16



The functoriality condition might sound mysterious, but it’s not. It just means that the
operations on W (R) are defined by certain universal polynomials in the entries. Namely,
suppose I take R to be the infinite polynomial ring Z[x0, x1, . . . , y0, y1, . . . ]. Then the uni-
versal polynomials describing Witt vector addition are none other than the components of
the Witt vector sum of (x0, x1, . . . ) and (y0, y1, . . . ). (Translation into fancy language: the
forgetful functor from rings to sets is represented by the ring Z[T ].)

In fact, even before proving the theorem, one can use this description to write down
candidate universal polynomials, and to see that they are uniquely determined by the con-
dition that the ghost map is a ring homomorphism. Namely, simply apply the ghost map
to (x0, x1, . . . ) and to (y0, y1, . . . ), add the results term-by-term, then apply the inverse
ghost map over the ring Z[1/p, x0, x1, . . . , y0, y1, . . . ]. The entire content of Witt’s theorem is
that the resulting polynomials (and the corresponding ones for multiplication and negation)
belong not just to Z[1/p, x0, x1, . . . , y0, y1, . . . ] but also to Z[x0, x1, . . . , y0, y1, . . . ].

There are a couple of ways to prove this. One is to make the following observation,
attributed variously to Cartier, Dieudonné, and Dwork.

Lemma 6.7. For R = Z[x0, x1, . . . , y0, y1, . . . ], if I define the map φ : R → R as the
substitution xi to x

p
i and yi to y

p
i , then a sequence w = (w0, w1, . . . ) belongs to the image of

the ghost map if and only if for n = 1, 2, . . . , we have wn ∼= φ(wn−1) (mod pn).

The point is that this makes it clear that the image of the ghost map is a subring.

Proof. Checking whether w = (w0, w1, . . . ) is in the image of the ghost map amounts to
reconstructing the sequence (z0, z1, . . . ) of elements of R[1/p] giving rise to w and seeing
whether those elements also belong to R. We can of course truncate the two sequences
(w0, . . . , wn) and (z0, . . . , zn) and ask whether the integrality of the zi is equivalent to the
congruence wi ∼= φ(wi−1) (mod pi) for i = 1, . . . , n. Suppose we’ve checked this for some n
(it’s automatic for n = 0). We then have

wn+1 = pn+1zn+1 + (zp
n+1

0 + · · ·+ pnzpn).

The point is that if z0, . . . , zn ∈ R, then the term in parentheses is congruent to φ(zp
n

0 +

· · · + pnzn) modulo pn+1, by term-by-term comparison: for each i, φ(pizp
n−i

i ) = piφ(zi)
pn−i ,

and the congruence φ(zi) ≡ zpi (mod p) implies φ(zi)
pn−i ≡ zp

n+1−i

i (mod pn+1−i). So we can
divide by pn+1 to get zn+1 if and only if wn+1 ≡ φ(wn) (mod pn+1).

There is another proof which is a bit tangential from the point of view of this course, but
makes some fascinating links with symmetric functions and other combinatorial objects. I
probably won’t discuss this in class, but I hope to put it in the notes at some point.

So now we have succeeded in making a functor W from rings to rings. It remains to
check that when k is a perfect field,

(a) the ring W (k) is a complete discrete valuation ring with maximal ideal (p) and residue
field k;
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(b) any other such object is isomorphic to W (k) (there can only be one such isomorphism
because of the Teichmüller lifts).

In general, there is a surjection W (R) → R given by keeping only the zeroth component, so
we have a map W (k) → k. To keep going, it is useful to introduce an additional structure
on Witt vectors in general. The Verschiebung map V : W (R) → W (R) is defined directly
on Witt components: V (x0, x1, . . . ) = (0, x0, x1, . . . ). It corresponds on the ghost side to
the map (w0, w1, . . . ) to (0, pw0, pw1, . . . ), so it is additive but not multiplicative: however,
it does satisfy the identity V (x)V (y) = pV (xy). Also, the image of V is precisely the kernel
of the map W (R) → R.

Now take R = k again. By calculating by hand, we find (exercise)

p · (x0, . . . ) = (0, xp0, . . . ) (1)

(exercise). We can use this to deduce that the image of V is the ideal (p). On one hand,
any multiple of p maps to zero in V , so it belongs to the image. On the other hand, suppose
x is in the image of V . Using (1), we produce y0 such that x− py0 is in the image of V 2. If
x− py0 = V 2(z), we can then produce y1 such that x− py0 − pV (y1) is in the image of V 3,
and so on. We get a sum y0 + V (y1) + · · · which is convergent in the sense that each Witt
component eventually stabilizes, so we get a limiting value y for which x = py. Hence (p) is
the image of V , and hence also the kernel of W (k) → k.

Also, p is not a zero divisor: for any x ∈ W (R) which is nonzero, there must then exist
a nonnegative integer n for which x = V n(y) for some y but is not in the image of V n+1.
From (1), py is nonzero, so V n(py) = px isn’t either.

Since p = V (x) for some x, we have V (1)V (x) = pV (x). Since p is not a zero divisor,
this forces V (1) = p.

For x1, . . . , xn ∈ W (R), we can write

V (x1) · · ·V (xn) = pn−1V (x1 · · · xn)
= V (pn−1x1 · · · xn)
= V (pn−2V (∗)) = V (V (pn−2∗)) = V (pn−3V (V (∗))) = · · · .

Consequently, V (x1) · · ·V (xn) belongs to the image of the n-th power of V , that is, its first
n components are zero. This implies that W (k) is p-adically complete; since W (k)/(p) = k
is a field, W (k) is a complete local ring. Moreover, using (1) once again, we see that any
element x of the image of V n which is not in the image of V n+1 is divisible by pn but not
pn+1, and x/pn is a unit in W (k). Hence W (k) is a principal ideal domain with one nonzero
prime ideal, so it’s a DVR.

That proves (a). Now we need to check that any other complete DVR R with maximal
ideal p and residue field k is isomorphic toW (k). Note first that the map k → W (k) given by
x → (x, 0, 0, . . . ) is multiplicative, and thus must coincide with the Teichmüller map (since
any element of the image has pn-th roots for all n). We can write each element of W (k) as a
convergent sum [x0] + [x1]p+ · · · , and likewise for R. Since there are universal polynomials
to express arithmetic in terms of Teichmüller elements (never mind what they are!), we get
a ring homomorphism taking Teichmüllers to Teichmüllers.
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Exercises

1. Compute (using a computer if you wish) the reductions modulo 53 of the Teichmüller
lifts in Z5.

2. Prove that for p > 2, every element of Zp congruent to 1 modulo p2 has a p-th root,
by checking that the binomial series expansion for (1 + p2x)1/p converges for x ∈ Zp.
For p = 2, replace p2 by p3.

3. Using the previous exercise, deduce that an element x ∈ Qp belongs to Zp if and only
if 1 + pp+1x2p has a p-th root in Qp. (Hint: the valuation of a p-th power must be a
multiple of p.)

4. Using the previous exercise, deduce that the field Qp has no nontrivial automorphisms.
Optional: extend this to the fraction field of any complete discrete valuation ring
with perfect residue field whose maximal ideal is generated by p, by proving that any
automorphism of the fraction field preserves valuations (and thus acts on the DVR,
and thus is determined by its action on the residue field).

5. Prove (1).

6. Prove that for any ring R, there is a ring homomorphism F : W (R) → W (R) cor-
responding to the left shift (w0, w1, . . . ) → (w1, w2, . . . ) on ghost components. Then
check that when p = 0 in R, this map is the map induced by the Frobenius map on
R via functoriality of W . (For that reason, this map is called the Frobenius map on
W (R).)

7 Local fields and number fields

I’m about to start discussing some finer structure of extensions of complete discrete valuation
rings, but to motivate this I should explain the motivation from algebraic number theory.
I’m hoping much of this is familiar; I’ll also prove some of these facts in more detail in the
next few lectures.

Let F be either a number field, i.e., a finite extension field of Q, or a function field,
i.e., a finite extension field of Fp(t) for some prime p > 0. This field comes equipped with
a distinguished subring oF , which is the integral closure of Z in the number field case,
or of Fp[t] in the function field case. This ring is a Dedekind domain, a one-dimensional
integrally closed noetherian integral domain. Such rings have unique factorization of ideals :
every nonzero fractional ideal a can be written as a product pe11 · · · penn for some nonnegative
integer n, distinct nonzero (hence maximal) prime ideals p1, . . . , pn and some positive integers
e1, . . . , en. This representation is moreover unique up to permuting the terms.

For each prime ideal p of F , we obtain a p-adic valuation function vp on F by taking
x to the exponent of p in the prime factorization of the principal fractional ideal (x). The
corresponding discrete valuation ring is the localization oF,p of oF at p, i.e., the ring obtained
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from oF by inverting every element of oF not belonging to p. Let Fp denote the completion
of F with respect to vp.

Let E be a finite separable extension of F (the separability condition being automatic in
the number field case); then oE is the integral closure of oF in E, and is again a Dedekind
domain. For each prime ideal p of oF , we can then factor poE = q

e1
1 · · · qenn as a product

of powers of distinct prime ideals of oE. This factorization contains the information of the
splitting and ramification of p in E. For instance, there are only finitely many primes p of
oF for which any of the exponents ei is greater than 1; these are the ramified primes for the
extension E/F . (More precisely, one should say that qi is ramified over p, since in general
the ei may not all be greater than 1.) The ramification determines the discriminant of F in
a somewhat complicated way; one thing we’ll do later is make that more explicit.cd

The relationship of this factorization to completion is captured by two statements. One
is that

E ⊗F Fp
∼= Eq1 ⊕ · · · ⊕ Eqn .

The other is that the restriction of vqi from E to F equals ei times vp. (Note that vp can
only extend one way to any finite field extension of Fp, so the valuations vqi must come from
different fields!)

Suppose further that E/F is a Galois extension with group G. Then G acts transitively
on the qi, so the ei are all equal. The subgroup Gqi of G fixing qi, called the decomposition
group of qi, also acts on Eqi ; since its order equals [E : F ]/n = [Eqi : Fp], Eqi is forced to
be a Galois extension of Fp with Galois group Gqi . It’s not too difficult to show that as p

varies, the groups Gqi cover all of G (this is less deep than the Chebotarev density theorem,
on which more in a moment).

The residue field oF/p is some finite field Fq, of which the residue field oE/qi is a finite
extension. This extension is Galois because any extension of finite fields is Galois. The group
Gqi acts on oE/qi; the kernel of this map is called the inertia group Iqi of qi. By interpreting
Gqi also as Gal(Eqi/Fp) and using Hensel’s lemma, we may see that Gqi actually surjects onto
Gal(Eqi/Fp). (We’ll give a more detailed explanation of this in a later lecture). In particular,
the Frobenius automorphism x 7→ xq in Gal(Eqi/Fp) can be lifted to Gqi ; the lift is unique
if and only if p is unramified. The Chebotarev density theorem asserts that every element
of G occurs equally often as a Frobenius automorphism. The Frobenius automorphisms also
appear in the Artin reciprocity law from class field theory, and in the definition of an Artin
L-function (see Stark’s class!).

As usual, when E/F is not Galois, you can pass to the Galois closure L of E/F , and put
G = Gal(L/F ) and H = Gal(L/E) ⊆ G. We can’t define a quotient group G/H since H is
not normal, but we can split primes of F up in L and then see how they come back together
in E. Using completions gives a nice interpretation of this: if we write

L⊗F Fp
∼= Lq1 ⊕ · · · ⊕ Lqn ,

then the components of E ⊗F Fp correspond to H-orbits among the components. (More
precisely, group each H-orbit together, then take the invariant elements of a single factor
under its own stabilizer.) Since H is not normal, there is no reason why we can’t have
heterogeneous behavior (different residue fields, different ramification).
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8 Unramified and tamely ramified extensions

In this lecture, let K be a field which is complete for a discrete valuation, normalized in the
usual way (so that vK maps surjectively to Z∪{+∞}). Let L be a finite separable extension
of K. We start by defining some key numerical invariants (which we are familiar with in the
context of splitting of prime ideals in number fields).

Recall that vK extends uniquely to a valuation on L, but with the wrong normalization.
If vL instead denotes the normalized valuation on L, then there exists a positive integer e
such that vL(x) = evK(x) for any x ∈ K. One way to characterize e is as the L-valuation of
a uniformizer in K. This number is called the ramification index of the extension L/K.

Next, if we write k and ℓ for the residue fields of K and L, respectively, then ℓ may be
naturally viewed as an extension field of k. The degree f = [ℓ : k] is called the residue degree,
or residue field degree, or residue class degree (there seems to be no naming consensus) of
the extension L/K.

Proposition 8.1. We have ef = [L : K]. In particular, f is finite.

Proof. Let π be a uniformizer of L. Choose a basis of ℓ over k, lift each element to oL

arbitrarily, and let B denote the result. I claim that the elements

{πib : i ∈ {0, . . . , e− 1}, b ∈ B}

form a basis for L over K, which will imply the equality.
To see that these are linearly independent, we will prove that if x =

∑
i,b xi,bπ

ib with
xi,b ∈ K, then

vL(x) = max
i,b

{vL(xi,bπib)}. (2)

It’s clear that the left side is greater than or equal to the right side, so let’s focus on the
other inequality. Choose a pair (j, c) for which vL(xj,cπ

jc) = maxi,b{vL(xi,bπib)}. If we now
write

x

xj,cπjc
=
∑

i,b

xi,bπ
ib

xj,cπjc
,

then each term on the right side belongs to oL. If we map to ℓ, then all the terms with
i 6= j vanish because vL(xi,bπ

ib) ≡ i (mod e), so we can’t have vL(xi,bπ
ib) = vL(xj,cπ

jc). So

we only get the sum
∑

b xj,b/xj,cb. This is a linear combination of basis elements of ℓ over
k, and not all of the coefficients are zero (because the coefficient for b = c equals 1), so it
represents a nonzero element of ℓ. Consequently, vL(x) = vL(xj,cπ

jc), which proves (2).
From (2), we see that we cannot have x = 0 but xi,b not all zero, so the πib are linearly

independent. To show that they form a basis, notice that for any nonzero x ∈ L, we can
cook up a K-linear combination y =

∑
i,b yi,bπ

ib for which vL(x− y) > vL(x). By repeating,

we can write x as a limit of linear combinations of the πib; the coefficients of any given πib
then converge to a limit, and using these limits as coefficients gives a linear combination
equal to x. (Note that we have shown that the πib form an orthogonal basis of L over K.
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Side remark: if the valuation on K is not discrete, [L : K]/(ef) is always an integer
which is a power of the characteristic of k (meaning 1 if that characteristic is 0), but can fail
to be equal to 1. This phenomenon was discovered by Ostrowski.

The case e = 1 is particularly interesting. We say that L/K is unramified if e = 1 and the
residue field extension ℓ/k is separable. E.g., for K = Q3, L = Q3[T ]/(T

2 + 1) is unramified
over K. One gets lots of examples using roots of unity; see the exercises.

Proposition 8.2. For any finite separable extension κ of k, there exists a unique unramified
extension U of K with residue field κ. Moreover, for L a finite separable extension of K
with residue field ℓ, any inclusion of κ into ℓ lifts uniquely to an inclusion of U into L.

Proof. To make U , write κ = k[T ]/(P ) for some monic irreducible polynomial P ∈ k[T ]
(using the primitive element theorem, which holds because κ/k is separable). Then lift P to
a monic polynomial P ∈ oK [T ], which is irreducible even overK (by Gauss’s lemma), and put
U = K[T ]/(P (T )). For d = deg(P ), the function v(x0+x1T+· · ·+xd−1T

d−1) = mini{vK(xi)}
is a valuation: it’s enough to check that the product of two things with valuation 0 is again
of valuation 0, but that reduces to the fact that κ is a field. This formula for the valuation
means that oU = oK [T ]/(P (T )), so we have a copy of κ in the residue field of U . Since
e(U/K)f(U/K) = d and now f(U/K) ≥ d, we have e = 1 and f = d.

To finish, we need only show that for this particular choice of U , for L a finite separable
extension of K with residue field ℓ, any inclusion of κ into ℓ lifts uniquely to an inclusion of
U into L. But this is just Hensel’s lemma for the polynomial P .

Corollary 8.3. If k is finite, then every unramified finite extension of K is Galois.

Proof. This follows from the proposition and the fact that every finite extension of a finite
field is a Galois extension.

Note that an unramified extension of an unramified extension is unramified, and the
compositum of unramified extensions is unramified. Moreover, if L1, L2 are two finite sepa-
rable extensions of K, and L1/K is unramified, then so is L2K/L2, but not conversely. (For
instance, this fails if L1 = L2!)

For example, if K = k((T )), then for any finite separable extension ℓ of k, the unramified
extension of K with residue field ℓ is precisely ℓ((T )). For another example, if k is perfect of
characteristic p > 0 and K = FracW (k), then for any finite (hence) separable extension ℓ of
k, the unramified extension of K with residue field ℓ is precisely FracW (ℓ). More generally,
whenever k is perfect of characteristic p > 0, we can use Witt vectors to describe unramified
extensions; see exercises.

The next simplest extensions to describe are the tamely ramified ones. We say L/K is
tame ramified (or simply tame) if e is not divisible by p and ℓ/k is separable. In this case,
the unramified extension U of K with residue field ℓ sits between L and K; we say that L
is totally tamely ramified over U . For example, if n is a positive integer not divisible by p,
and a ∈ K has no d-th root in K for any d > 1 dividing n, then K[T ]/(T n − a) is a tamely
ramified extension of K (exercise).
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Again, a tamely ramified extension of a tamely ramified extension is tamely ramified,
and the compositum of tamely ramified extensions is tamely ramified. Moreover, if L1, L2

are two finite separable extensions of K, and L1/K is tamely ramified, then so is L2K/L2,
but not conversely.

One consequence is that for any finite separable extension L/K, the compositum T of all
tamely ramified subextensions is again tamely ramified, and in fact is the maximal tamely
ramified subextension of L/K. If L 6= T , we say L is wildly ramified (or simply wild); if
T = K, we say L is totally wildly ramified.

Proposition 8.4. Suppose L/K is totally tamely ramified of degree d. Then there exists
a ∈ K for which L = K[T ]/(T d − a). In fact, a can be taken to be a uniformizer in K.

Proof. Let πL be a uniformizer of L; then vL(π
d
L) also occurs as the L-valuation of a uni-

formizer in K. Since k = ℓ, we can in fact find a ∈ K for which πdL/a is a unit in oL congruent
to 1 modulo πL. If we write πdL/a = 1 + x, then the binomial series

(1 + x)1/d =
∞∑

i=0

(
d

i

)
xi

converges because 1/d ∈ Zp, so the binomial coefficients
(
d
i

)
are all in Zp. If we write

y = (1 + x)1/d, then we can write L = K(a1/d) as desired.

Warning: unlike unramified extensions, tamely ramified extensions can fail to be Galois
even when k is finite (exercise). The previous proposition doesn’t contradict this statement
because K(a1/d) need not be Galois over K in case K doesn’t contain a primitive d-th root
of unity.

Exercises

1. Suppose k is perfect of characteristic p > 0. Prove that there is a unique ring homo-
morphism W (k) → oK lifting the identity map on residue fields.

2. Suppose k is perfect of characteristic p > 0. Using the previous exercise, show that
for any finite separable extension ℓ of k, the ring oK ⊗W (k)W (ℓ) is a complete discrete
valuation ring whose fraction field is unramified over K with residue field ℓ.

3. Let p be a prime number, let m be any positive integer, and let ζm be a primitive m-th
root of unity in some algebraic closure of Qp.

(a) Prove that Qp(ζm) is unramified over Qp if and only if either p > 2 and m is not
divisible by p, or p = 2 and m is not divisible by 4.

(b) Prove that Qp(ζm) is tamely ramified over Qp if and only if either p > 2 and m is
not divisible by p2, or p = 2 and m is not divisible by 4. (In particular, for p = 2,
Qp(ζm) is unramified if and only if it is tamely ramified.)
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4. Let n be a positive integer not divisible by p, and suppose a ∈ K has no d-th root in
K for any d > 1 dividing n. Prove that K[T ]/(T n − a) is a tamely ramified extension
of K. (Hint: you may want to first understand the cases where vK(a) = 0 and where
vK(a) is coprime to n.)

5. (a) Find an example of a cubic non-Galois extension of Qp for some p > 3.

(b) Show that every such extension is totally tamely ramified.

(c) Show that no such extension exists for p ≡ 1 (mod 3).

6. Prove Krasner’s lemma: let α, β be elements of an algebraic closure of K, with K(α)
separable over K. Let α = α1, α2, . . . , αn be the conjugates of α. Prove that if α − β
has greater valuation than all of α−α2, . . . , α−αn, then α ∈ K(β). (Hint: use Hensel’s
lemma.)

9 Ramification filtrations: the lower numbering

Keep notation as in the previous lecture, but assume that L is Galois over K with Galois
group G, and that ℓ is separable over k. We describe a filtration on G that picks out the
maximal unramified subextension, the maximal tamely ramified extension, and some other
intermediate extensions that we can use to describe the discriminant of L over K.

To begin with, recall that G acts on oL (since the valuation on K extends uniquely to L)
preserving oK , and thus acts on ℓ preserving k.

Lemma 9.1. The extension ℓ/k is Galois, and the map G→ Gal(ℓ/k) is surjective.

Proof. Let U be the maximal unramified subextension of L/K; it has residue field ℓ because
ℓ/k is separable. Any g ∈ Gal(L/K) must take U to U , so U is a Galois subextension and
Gal(L/K) surjects onto Gal(U/K). But the uniqueness property of unramified extensions
allows us to identify Gal(U/K) with Gal(ℓ/k).

Let p denote the maximal ideal of oL. For each integer i ≥ −1, the group G acts on the
quotient oL/p

i+1; let Gi be the subgroup of G acting trivially on oL/p
i+1. The Gi comprise

the ramification filtration on G for the lower numbering, as to be distinguished from the
upper numbering to come later. Obviously

G = G−1 ⊃ G0 ⊃ · · · ,

and G0 = Gal(L/U) from the proof of the previous lemma. We also call G − 0 the inertia
subgroup of G. Also, Gi is the trivial group for i sufficiently large: e.g., choose generators
x1, . . . , xn of oL as a oK-algebra, and choose i so that vL(g(xj) − xj)) ≤ i whenever j ∈
{1, . . . , }, g ∈ Gal(L/K), and g(xj) 6= xj. (In fact, one can get away with only one generator;
see exercises.)

The following fact is obvious from the definition.
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Lemma 9.2. Let K ′ be a subextension of L/K, and put H = Gal(L/K ′). Then Hi = Gi∩H
for all i ≥ −1.

On the other hand, the groups Gi do not behave well with respect to taking quotients,
which is arguably more natural; for instance, they don’t give any useful structure on the
absolute Galois group of K. For this, we will have to switch to the upper numbering, but
more on that a bit later.

To get more information about the other groups, let π be a uniformizer of oL.

Lemma 9.3. For i ≥ 0, if g ∈ G0, then g ∈ Gi if and only if g(π)/π ≡ 1 (mod piL).

Proof. By the previous lemma, it is harmless to replace K by its maximal unramified subex-
tension within L, so we may go straight to the case G = G0. In this case, oL is generated
by π as a oK-algebra, so g ∈ Gi if and only if vL(g(π) − π) ≥ i + 1. This is equivalent to
vL(g(π)/pi− 1) ≥ i, proving the claim.

Corollary 9.4. For i ≥ 0, the quotient Gi/Gi+1 admits a natural (i.e., not dependent on
the choice of π) injective map to U i

L/U
i+1
L , for U i

L the subgroup of the group of units of oL
consisting of elements congruent to 1 modulo πi.

Proof. The map takes g to the image of g(π)/π. Injectivity, and the independence from the
choice of π, are easy (or see Serre IV.2, proposition 7).

Corollary 9.5. The group G0/G1 is cyclic, of order prime to the characteristic of k.

Proof. We have an injective map from G0/G1 to ℓ×; since G0/G1 has finite order, its image
must consist of a finite subgroup of the roots of unity in ℓ. But any such group is finite with
order prime to the characteristic of ℓ.

Corollary 9.6. For i > 0, the group U i
L/U

i+1
L is isomorphic (canonically) to the additive

group pi/pi+1 and also (not canonically) to the additive group of ℓ. In particular, Gi/Gi+1

is an elementary abelian p-group for p the characteristic of k, or the trivial group if k has
characteristic 0.

Corollary 9.7. We have G1 = Gal(L/T ) for T the maximal tamely ramified subextension
of L/K. This group is a p-group.

Corollary 9.8. The group G0 is solvable. If k is a finite field, then G is solvable.

Proof. Since Gi/Gi+1 is abelian for i ≥ 0 and Gi is trivial for i large, we find that G0 is
solvable, and G is solvable if and only if G−1/G0

∼= Gal(ℓ/k) is solvable. The latter is
automatic for k finite, since then Gal(ℓ/k) is cyclic.

This means that the analogue of the inverse Galois problem for local fields must be
restricted quite far. If you just look at the inertia group, it has a unique p-Sylow subgroup,
which is normal and the quotient by which is cyclic of order prime to p. This forces the
group to be a semidirect product of the p-Sylow with the prime-to-p quotient (by a fact from
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group theory, or see Serre IV.2 for a direct proof). Conversely, every such group occurs as
the inertia group for a suitable choice of K, but I won’t try to show that here.

We already know that the groups Gi/Gi+1 are elementary abelian, so the commutator
of two elements of Gi belongs to Gi+1. In fact, something much stronger is true. Let
θi : Gi/Gi+1 → U i

L/U
i+1
L be the map constructed earlier. Note first that G0 acts on each Gi

by conjugation, so G0 has a well-defined action on Gi/Gi+1.

Proposition 9.9. If g ∈ G0 and h ∈ Gi/Gi+1 for some i ≥ 1, then θi(ghg
−1) = θ0(g)

iθi(h).

Proof. Write π′ = g−1(π) and h(π′) = π′(1 + πiu) with u ∈ o
×
L , so

ghg−1(π)

π
=
g(π′)g(1 + πiu)

π
= 1 + g(π)ig(u).

In piL/p
i+1
L , g(π)ig(u) represents the same class as θ0(g)θi(h) because g(u) ≡ u (mod π)

(since g ∈ G0). This proves the claim.

Corollary 9.10. If g ∈ G0 and h ∈ Gi for some i ≥ 1, then ghg−1h−1 ∈ Gi+1 if and only if
gi ∈ G1 or h ∈ Gi+1.

Corollary 9.11. If G is abelian and e0 is the order of G0/G1, then the integers i ≥ 1 for
which Gi 6= Gi+1 are all divisible by e0.

Lemma 9.12. If g ∈ Gi, h ∈ Gj, and i, j ≥ 1, then ghg−1h−1 ∈ Gi+j and θi+j(ghg
−1h−1) =

(j − i)θi(g)θj(h).

Note that the expression θi(g)θj(h) is defined by identifying U i
L/U

i+1
L with pi/pi+1.

Proof. Write g(π) = π(1 + πiu) and h(π) = π(1 + πjv) with u, v ∈ oL. Then

gh(π) = π(1 + πiu)(1 + g(π)jg(v)).

Similarly,
hg(π) = π(1 + πjv)(1 + h(π)ih(u)).

Since g ∈ Gi, we have g(v) ≡ v (mod p
i+1
L ). Also,

(1 + πiu)j ≡ 1 + jπiu (mod p
i+1
L ).

Hence

g(π)jg(v) ≡ g(π)v = πj(1 + πiu)jv ≡ πj(1 + jπiu)v ≡ πjv + jπi+juv (mod p
i+j+1
L )

and so

gh(π)

π
≡ (1 + πiu)(1 + πjv + jπi+juv) ≡ 1 + πiu+ πjv + (j + 1)πi+juv (mod p

i+j+1
L ).
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Similarly,
hg(π)

π
≡ 1 + πiu+ πjv + (i+ 1)πi+juv (mod p

i+j+1
L ).

Put π′ = hg(π). Then

ghg−1h−1(π′)

π
=
gh(π)

π′

=
gh(π)

π

π

hg(π)

≡ 1 + (πiu+ πjv + (j + 1)πi+juv)− (πiu+ πjv + (i+ 1)πi+juv) (mod p
i+j+1
L )

≡ 1 + (j − i)πi+juv (mod p
i+j+1
L ).

This proves the claim.

Lemma 9.13. The integers i ≥ 1 for which Gi 6= Gi+1 are all congruent modulo p.

Proof. If G1 = {1} we have nothing to show, so assume G1 6= {1}. Take j ≥ 1 to be the
largest integer for which Gj 6= {1}, and let i ≥ 1 be any integer for which Gi 6= Gi+1.
We can choose g ∈ Gi − Gi+1 and h ∈ Gj − Gj+1 and use the previous lemma to see
that ghg−1h−1 ∈ Gi+j and θi+j(ghg

−1h−1) = (j − i)θi(g)θj(h). Since i + j > j, we have
Gi+j = {1} and so ghg−1h−1 = 1, so θi+j(ghg

−1h−1) = 0. But θi(g), θj(h) are nonzero, so
j − i ≡ 0 (mod p).

Proposition 9.14. If g ∈ Gi, h ∈ Gj, and i, j ≥ 1, then ghg−1h−1 ∈ Gi+j+1.

Proof. If g ∈ Gi+1 or h ∈ Gj+1, this follows from Lemma 9.12. Otherwise, i ≡ j (mod p) by
Lemma 9.13, so θi+j(ghg

−1h−1) = 0 by Lemma 9.12 again.

Exercises

1. Prove that for any finite separable extension L ofK whose residue field is also separable
over k, oL can be generated as a oK-algebra by just one element. (This can fail if the
residue field is not separable over k!)

2. Prove that if K = k((T )) and k is of characteristic 0, then the algebraic closure of
k((T )) is the union of the ℓ((T 1/n)) running over all finite extensions ℓ and all positive
integers n.

3. Demonstrate that the previous exercise fails in characteristic p by showing that the
ring ∪ℓ,nℓ((T 1/n)) does not contain a root of the polynomial P (X) = Xp −X − T−1.
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10 More ramification filtrations: the upper numbering

For various reasons, particularly motivated by local class field theory, we will need a different
numbering of the ramification groups. The correct transition from the lower numbering to
the upper numbering was discovered by Herbrand. Keep notation as in the previous lecture

Lemma 10.1. There exists x ∈ oL such that oL is generated by x as a oK-algebra. (This
doesn’t require L to be Galois over K, but it does require ℓ to be separable over k.)

Proof. Recall that for π a uniformizer of oL and b0, . . . , bf−1 ∈ oL lifting a basis of ℓ as a
k-vector space, the elements πibj for i = 0, . . . , e−1 and j = 0, . . . , f −1 form an orthogonal
basis of L over K, in the sense that for any choice of ci,j ∈ K,

vL

(
∑

i,j

ci,jπ
ibj

)
= min

i,j
{evK(ci,j) + i}.

In particular, the πibj form a basis for oL as a module over oK .
By the primitive element theorem, we can find an element of ℓ which generates ℓ as a

k-algebra. By lifting that element and then taking its powers, we may take b1, . . . , bf to be
of the form 1, x, . . . , xf−1 for some x ∈ oF . We’ll be finished if we can arrange for some
polynomial R(x) in x which is monic of degree f to be a uniformizer of oL, in which case we
take it for our value of π and then use 1, x, . . . , xef−1 as a basis for oL as a oK-algebra.

This amounts to a mutant variant of Hensel’s lemma. Choose R(T ) ∈ oK [T ] to be a
monic polynomial lifting the minimal polynomial of x (the image of x in ℓ) over k. We must
have vL(R(x)) > 0. If vL(R(x)) = 1, then we’re done. Otherwise, let π be any uniformizer
of oL, and write

R(x+ π) ≡ R(x) + πR′(x) (mod π2).

Since ℓ is separable over k, R′(x) 6≡ 0 (mod π), so vL(R(x + π)) = 1 and we can use x + π
instead of x.

This gives us a handy way to compute the ramification filtration on a quotient group.
Given x as above, for g ∈ G, put iG(g) = vL(g(x) − x). Then iG(g) ≥ i + 1 if and only if
g ∈ Gi, so this definition doesn’t depend on x.

Lemma 10.2. Let H be a normal subgroup of G with fixed field K ′. Then for σ ∈ G/H,

iG/H(σ) =
1

e′

∑

g→σ

iG(g),

where the sum runs over g ∈ G mapping to σ ∈ G/H, and e′ = e(L/K ′).

Proof. Choose y ∈ oK′ generating oK′ as an oK-algebra. Pick one g ∈ G mapping to
σ ∈ G/H. The stated equality will follow if we show that the elements

a = g(y)− y, b =
∏

h∈H

(gh(x)− x)
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of oL have the same valuation, or equivalently, generate the same ideal. (The factor of e′

occurs because vL(g(y)− y) = e′vK′(g(y)− y) = e′iG/H(σ).)
Let f =

∏
h∈H(T −h(x)) ∈ oK′ [T ] be the minimal polynomial of x over K ′. Write g(f) =∏

h∈H(T−gh(x)) for the polynomial obtained from f by applying g to each coefficient. Since
g(f)−f has all coefficients divisible by g(y)−y, g(y)−y = amust divide g(f)(x)−f(x) = ±b.

Conversely, we can write y = P (x) for some P (T ) ∈ oK [T ]. Then P (T )−y is a polynomial
in oK′ [T ] with T = x as a root, so it is divisible by the minimal polynomial f in K ′[T ] (and
in oK′ [T ] by Gauss’s lemma). Write P (T ) − y = f(T )h(T ) with h(T ) ∈ oK′ [T ]; then apply
g and put T = x to get P (x)− g(y) = g(f)(x)g(h)(x). The left side is y− g(y) = −a, which
is divisible by g(f(x)) = ±b.

We can now define (following Herbrand) a new numbering on the ramification filtration,
called the upper numbering, that is compatible with quotients rather than subgroups. It is
useful to first extend the lower numbering notation to nonintegral indices: if u ≥ −1, write
Gu to mean Gi for i = ⌈u⌉ the least integer greater than or equal to u. For u ≥ −1, define

φ(u) =

∫ u

0

dt

[G0 : Gt]
;

this is the unique continuous, piecewise linear, increasing, concave function for which φ(0) =
0 and φ′(u) = 1/[G0 : Gu] for u ≥ −1 not an integer. In particular, it has an inverse function
ψ which is continuous, piecewise linear, increasing, and convex, and satisfies ψ(0) = 0. Also,
the slopes of ψ are all integers, because they are the reciprocals of slopes of φ. We write
φL/K and ψL/K when we need to specify the extension L/K.

Lemma 10.3. If v is an integer, then so is u = ψ(v).

Proof. Put gi = #Gi, and choose m ∈ Z for which m ≤ u ≤ m+ 1. Then

v = φ(u) =
1

g0
(g1 + · · ·+ gm + (u−m)gm+1),

so
g0v = g1 + · · ·+ gm + (u−m)gm+1.

For i ≤ m, Gm+1 is a subgroup of Gi and so gm+1 is a divisor of gi. Hence u−m ∈ Z, forcing
u ∈ Z.

The upper numbering of the ramification groups is given by

Gv = Gψ(v)

or in other words
Gφ(u) = Gu.

Theorem 10.4 (Herbrand). LetK ′ be a Galois subextension of L/K and put H = Gal(L/K ′).
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(a) We have
φL/K = φK′/K ◦ φL/K′ , ψL/K = ψL/K′ ◦ ψK′/K .

(b) We have (G/H)v = GvH/H for all v ≥ −1.

Lemma 10.5. We can rewrite φL/K(u) =
(

1
g0

∑
g∈Gmin{iG(g), u+ 1}

)
− 1.

Proof. Both sides of the equation are continuous, piecewise linear functions which vanish at
u = 0 (at which point the sum in parentheses contributes 1 for each g ∈ G0 and 0 otherwise).
Moreover, for u ∈ (m,m + 1) for any m ∈ Z, the derivative of the right side is 1/g0 times
the number of g ∈ G for which iG(g) ≥ m+ 2, which is gm+1/g0 = 1/[G0 : Gm+1].

Lemma 10.6. For σ ∈ G/H, let j(σ) be the maximum of the integers iG(g) over all g ∈ G
mapping to σ ∈ G/H. Then

iG/H(σ)− 1 = φL/K′(j(σ)− 1).

Proof. Pick any g ∈ G with image σ such that iG(g) = j(σ), and call this common value m.
If h ∈ H belongs to Hm−1, then iG(s) ≥ m and so iG(gh) ≥ m, but this forces iG(gh) = m.
Otherwise, iG(h) < m, so iG(gh) = iG(h). We conclude that

iG(gh) = min{iG(h),m}.
From Lemma 10.2,

iG/H(σ) =
1

e(L/K ′)

∑

h∈H

min{iG(h),m},

but e(L/K ′) = #H0 and iG(h) = iH(h). Applying Lemma 10.5 with the group H, we get
iG/H(σ) = 1 + φL/K′(m− 1), as desired.

Corollary 10.7. For v = φL/K′(u), we have GuH/H = (G/H)v.

Proof. Since φ is monotonic, σ ∈ GuH/H is equivalent to j(σ) − 1 ≥ u and thus to
φL/K′(j(σ) − 1) ≥ v. But that just says that iG/H(σ) − 1 ≥ v by Lemma 10.6, or σ ∈
(G/H)v

Proof of Theorem 10.4. For part (a), both φL/K and φK′/K ◦φL/K′ are continuous, piecewise-
linear functions vanishing at u = 0, so it suffices to compare their derivatives at u ∈ (m,m+1)
for any m ∈ Z. By the chain rule, the derivative of φK′/K ◦ φL/K′ at u is φ′

K′/K(v)φ
′
L/K′(u)

for v = φL/K′(u). Recall that this equals

#(G/H)v
eK′/K

#Hu

eL/K′

.

The denominators multiply to eL/K , while the numerators multiply to #Gu by Corollary 10.7
and the fact that #(GuH/H)#Hu = #Gu (because GuH/H ∼= Gu/(Gu ∩H)). We thus get
the same thing as the derivative of φL/K , as claimed. (The ψ relation follows from the φ
relation by taking inverses.)

For (b), write (G/H)v = (G/H)x with x = ψK′/K(v). By Corollary 10.7, (G/H)x =
GwH/H with w = ψL/K′(x), but this equals ψL/K(v) by (a).
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I hope to get to the following fact later.

Theorem 10.8 (Hasse-Arf theorem). If G is an abelian group, then the values v at which
Gv changes size are all integers.

This is not true in general; see exercises.

Exercises

1. (from Serre) Let G be the quaternion group {±1,±i,±j,±k}, and let C = {±1} be
the center. Supose that G is the Galois group of a totally ramified extension L/K and
G4 = {1}. Show that Gv = G for v ≤ 1, Gv = C for 1 < v ≤ 3/2, and Gv = {1} for
v > 3/2. In particular, Gv changes size at the nonintegral value v = 3/2, showing that
the Hasse-Arf theorem cannot be extended to nonabelian groups.

2. Prove that the situation in the previous exercise can occur for K a finite extension of
Q2. (Hint: I think this can be done for K = Q2, and that one can find examples in
the online Database of Local Fields.)

11 Discriminant and different

Here’s one of the key motivations for defining the ramification filtration.
Let K be a field carrying a discrete valuation vK (completeness is not needed just yet).

Let L be a finite extension of K. The trace map TraceL/K : L → K is the K-linear map
obtained by viewing L as a finite-dimensional K-vector space, and defining TraceL/K(x)
to be the trace of the multiplication-by-x map on K. If L/K is Galois, this agrees with
the usual definition that TraceL/K(x) is the sum of the conjugates of x in L (because the
eigenvalues of the multiplication-by-x map are precisely these conjugates, and the trace of a
matrix equals the sum of its eigenvalues).

It turns out that L/K is separable if and only if the trace pairing 〈x, y〉 → TraceL/K(xy)
is nondegenerate (i.e., every nonzero element of L has nonzero pairing with something). If
we let R denote the valuation subring of K and S the valuation subring of L, then the
discriminant of L/K is defined as the ideal generated by the determinant of the matrix
(TraceL/K(eiej))

n
i,j=1 for any basis e1, . . . , en of S as a module over R. (Changing the basis

modifies this matrix but does not change its determinant.) For example, L/K is unramified
if and only if the discriminant is the unit ideal.

An important point to note is that the discriminant makes sense even if L is not a field,
but only a direct sum of fields. In particular, if K̂ is the completion of K, then we can talk
about the discriminant of L ⊗K K̂ over K̂. Since L ⊗K K̂ splits up as a product of fields
(the completions of L under the different extensions of vK), the discriminant also splits as
the product of the discriminants of these individual field extensions.

The discriminant is a somewhat crude invariant of the extension L/K. A somewhat
more refined invariant is provided by computing the codifferent, or inverse different, of L/K;
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this is the S-submodule of L consisting of those x ∈ S for which TraceL/K(xy) ∈ R for all
y ∈ S. This turns out to be a finite S-submodule of L, so it is generated by some power
of a uniformizer of S. The ideal in S generated by the inverse of that power is called the
different of L/K. Again, it is the unit ideal if and only if L/K is unramified.

Just like the discriminant, the different splits up into contributions from different exten-
sions of the valuation vL. One way to say this is to again view L ⊗K K̂ as a product of
fields, each carrying a unique extension of vK from K̂, and form the product of the valuation
subrings. If we take the product of the differents corresponding to the various extensions L̂
of K̂, we get the same ideal as generated by the different of L over K. See also Proposition 10
in section III.4 of Serre.

Here’s a link to the ramification groups, at least in the lower numbering.

Proposition 11.1. Suppose K is complete (as then is L for a unique extension of vK) and L
is Galois over K with separable residue field extension. Then the L-valuation of the different
of L/K equals

∑

g∈G−{e}

iG(g) =
∞∑

i=0

(#Gi − 1).

Proof. Let x be a generator of oL as a oK-algebra. The quantity in question is then the
valuation of

∏
g 6=e(x− g(x)), which is equal to f ′(x) for f the minimal polynomial of x over

K. We thus need to show that the inverse different is generated by f ′(x); this follows from
a hopefully familiar calculation: if n = deg(f), then

TraceL/K

(
xi

f ′(x)

)
=

{
0 i = 0, . . . , n− 2

1 i = n− 1.

(Proof: write 1/f(T ) =
∑n

i=1 1/(f
′(xi)(T − xi)) for x1, . . . , xn the roots of f , then expand

in power series in T .)

Corollary 11.2. Let K ′ be the subextension of L corresponding to the (not necessarily nor-
mal) subgroup H of G. Then the K ′-valuation of the different of L/K equals

1

e(L/K ′)

∑

g/∈H

iG(h).

One can in principle determine the discriminant from the different, but this looks messy.
The key point here is that the different lives “in L”, so it is linked to the lower numbering
filtration (which is defined using the valuation on L, and behaves well when fixing L and
changing the field under it). The discriminant, however, lives “in K”, so it is better to
treat it using the upper numbering filtration, which is optimized to have good behavior with
respect to K (e.g., when fixing K and changing the field over it). We’ll come back to this
after we discuss the Hasse-Arf theorem and Artin representations.
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12 Example: cyclotomic extensions

Theorem 12.1. Put K = Qp and L = Q(ζpn) for ζpn a primitive pn-th root of unity. Then
the jumps in the upper numbering filtration on G = Gal(L/K) are 0, 1, . . . , n−1 when p 6= 2,
and 1, . . . , n− 1 when p = 2. In particular, they are all integers.

There are a few glitches in the proof for p = 2, so we leave it as an exercise to iron those
out.

Proof for p 6= 2. We first check that oL = Zp[ζpn ]. Note that ζpn−1 is a root of the polynomial

P (T ) = (T + 1)(p−1)pn−1

+ (T + 1)(p−2)pn−1

+ · · ·+ 1.

Modulo p this polynomial is congruent to ((T + 1)p
n − 1)/((T + 1)p

n−1 − 1) = T (p−1)pn−1
, so

its nonleading coefficients are all in pZp. Moreover, the constant coefficient is p. This is thus
an Eisenstein polynomial, i.e., its Newton polygon is flat with slope 1/((p − 1)pn−1). This
forces P to be irreducible, and also forces f(K1/K) ≥ (p − 1)pn−1. Since this accounts for
the whole degree, e(K1/K) = 1, f(K1/K) = (p− 1)pn−1, and ζpn − 1 is a uniformizer.

The breaks in the lower numbering filtration can now be computed as vL(g(ζpn − 1) −
(ζpn−1)) for g running over the Galois group. Identify G with (Z/pnZ)×, so that g(ζpn) = ζgpn ;

then g(ζpn − 1) − (ζpn − 1) = ζpn(ζ
g−1
pn − 1). If g − 1 is exactly divisible by pm, then ζg−1

pn

is a primitive pn−m-th root of unity. We thus see that the lower numbering breaks occur at
pm− 1 for m = 0, . . . , n− 1. It thus remains to compute the functions φL/K and ψL/K to see
what happens in the upper numbering; we leave this as an exercise.

Exercises

1. Complete the proof of Theorem 12.1 by computing the functions ψL/K and φL/K .

2. Extend the proof of Theorem 12.1 to the case p = 2.

13 The norm map: unramified case

For K a field and L a finite extension of K, the norm N = NL/K : L → K can be defined
in two ways. One is that the norm of x ∈ L is the determinant of the multiplication-by-x
map viewed as a K-linear endomorphism of L. The other is that it’s the product of the
conjugates of x in an algebraic closure of K (provided that you count multiplicities in case
L is not separable over K).

Now let K be complete for a discrete valuation, and assume that the residue field ℓ of L
is separable over the residue field k of K. For f = f(L/K), we have a diagram

0 // UL

N
��

// L×

N
��

// Z

×f

��

// 0

0 // UK // K× // Z // 0

33



with exact rows, where UK is the units of oK congruent to 1 modulo the maximal ideal, and
similarly for L. As we saw when considering the ramification filtration, it is useful to filter
the group UK using the subgroups U i

K of units congruent to 1 modulo the i-th power of the
maximal ideal. One can then ask how the norm maps interact with these subgroups. This
is easiest to see in the case of an unramified extension.

Proposition 13.1. If L/K is Galois and unramified, then NL/K maps Un
L into Un

K for all
n ≥ 1.

This doesn’t require the Galois condition; see exercises.

Proof. Write x ∈ Un
L as 1 + y with vL(y) ≥ n. Put G = Gal(L/K) and write NL/K(x) =∏

g∈G(1 + g(y)), which equals 1 plus a sum of terms with L-valuation at least n. That sum
is in K, and the unramified condition means that K-valuations and L-valuations agree for
elements of K, so we have an element of Un

K .

If we identify o
×
K/U

1
K with the multiplicative group k×, and similarly for ℓ, then NL/K

induces a map ℓ× → k× which is just the norm map. For n ≥ 1, we may identify
Un
L/U

n+1
L with pnL/p

n+1
L , which in turn we may canonically identify with pnK/p

n+1
K ⊗k ℓ. In

this representation, NL/K induces a map Un
L/U

n+1
L → Un

K/U
n+1
K corresponding to the map

id⊗ Traceℓ/k : p
n
K/p

n+1
K ⊗k ℓ→ pnK/p

n+1
K . Note that this map is surjective because the trace

map is surjective for the finite separable extension ℓ/k.

Proposition 13.2. For n ≥ 1, NL/K(U
n
L) = Un

K. Also UK/NL/K(UL) ∼= k×/NL/K(ℓ
×), and

K×/NL/K(L
×) = Z/fZ× k×/NL/K(ℓ

×).

Proof. The first two statements follow from the previous discussion plus the snake lemma
on the diagram

0 // U1
L

N
��

// UL

N

��

// ℓ×

×f

��

// 0

0 // U1
K

// UK // k× // 0.

The third statement follows by writing K× = Z × UK and similarly for K, where 1 ∈ Z

corresponds to your favorite uniformizer of K (which is also a uniformizer of L because L/K
is unramified).

Corollary 13.3. If k and ℓ are finite, then UK = NL/K(UL).

Proof. This holds because the map Nℓ/k : ℓ
× → k× is always surjective (count the elements

of its kernel).

13.1 Exercises

1. Show that Proposition 13.1 still holds without the unramified condition. (Hint: the
Galois closure of an unramified extension is unramified.)

2. Do likewise for the other results in this lecture.
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14 The norm map: totally ramified cases

Since we understand the behavior of the norm map on the groups Un
L in the unramified case,

it is not too serious to consider only the totally ramified case. Let’s add that restriction now.
The goal is to prove the following.

Theorem 14.1. Write ψ = ψL/K. For n ≥ 0 an integer, NL/K(U
ψ(n)
L ) ⊆ Un

K and NL/K(U
ψ(n)+1
L ) ⊆

Un+1
K .

The first thing to note is that we can induct on the order of G. Since G is solvable, if
it is nontrivial then it always has a nontrivial proper normal subgroup H, corresponding to
a Galois subextension K ′/K of L/K. The first assertion follows easily from the induction
hypothesis and Herbrand’s rule ψL/K = ψL/K′ ◦ ψK′/K .

Again because G is solvable, we can always reduce to the case of a cyclic group of prime
order l, which may or may not be equal to p (although the case l 6= p is tame, which makes
it fairly easy).

Lemma 14.2. Assume G is cyclic of prime order l, and that the unique ramification break
of G is at t (in either numbering!).

(a) The different of L/K is pmL for m = (t+ 1)(l − 1).

(b) For n ≥ 0, Trace(pnL) = prK for r = ⌊(m+ n)/l⌋.

Proof. Part (a) follows from Proposition 11.1. Part (b) follows from (a) by observing that
from the definition of the different, Trace(pnL) ⊆ prK if and only if pnL belongs to prK times the
inverse different.

Here’s the key calculation.

Lemma 14.3. For x ∈ pnL with n ≥ 1, we have

NL/K(1 + x) ≡ 1 + TraceL/K(x) +NL/K(x) (mod Trace(p2nL )). (3)

Proof. If we expand N(1 + x) =
∏

g∈G(1 + g(x)), the initial term 1, the terms with one g,
and the final term with all of the g correspond to the three terms on the right side of the
desired expression. For k = 2, . . . , l − 1, the sum of the k-fold products of the g(x) is the
trace of some element of pknL , giving the claim.

To prove Theorem 14.1, we should do a bit more. Note that given Theorem 14.1 for a
given n, we once again get a map Nn : U

ψ(n)
L /U

ψ(n)+1
L → Un

K/U
n+1
K ; we need to calculate this

map for a given n in order to get Theorem 14.1 for n+ 1. Here’s the answer.

Proposition 14.4. (a) For n = 0, Nn : k× → k× is the l-th power map. If t 6= 0, then
l = p and this map is injective. If t = 0, then l 6= p and the map has kernel equal to
the image of G in UL/U

1
L.
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(b) For 1 ≤ n < t, we can find αn ∈ k× so that Nn(ξ) = αnξ
p. This map is injective, and

also surjective if k is perfect.

(c) For n = t, we can find α, β ∈ k× so that Nn(ξ) = αξp + βξ. This map has kernel of
order p, equal to the image of θt. It is surjective if k is algebraically closed.

(d) For n = t, we can find βn ∈ k× so that Nn(ξ) = βξ. This map is bijective.

Proof. Case (a) is easy. In (3), when n < t, the term N(x) dominates; when n > t, the term
Trace(x) dominates; and when n = t, the two are equal. (This follows from Lemma 14.2
and some fairly menial calculation which can be found in Serre V.3.) This gives the desired
results.

Using this reasoning, we also get the following. (See Serre V.6 for omitted details.)

Theorem 14.5. The sequence

0 → Gψ(n)/Gψ(n)+1

θψ(n)→ U
ψ(n)
L /U

ψ(n)+1
L

Nn→ Un
K/U

n+1
K ,

in which the last map is induced by the norm via the previous theorem, is exact. Consequently,
the map Nn : U

ψ(n)
L /U

ψ(n)+1
L → Un

K/U
n+1
K is injective if and only if Gψ(n) = Gψ(n)+1. (If this

holds and also k is perfect, then Nn is also surjective.)

Proof. Again, induct on the order of G.

Exercises

1. Put K = Fp((t)) and L = K[z]/(zp− z− t−m) for m a positive integer coprime to p, so
that L/K is a Galois extension with group G = Z/pZ (an Artin-Schreier extension).
Find the unique break in the ramification filtration on G, as a function of m.

15 Artin representations

The ramification filtration on the Galois group of an extension of local fields also gives useful
information about linear representations of these groups. This information shows up when
you try to make a careful study of Artin L-functions (without throwing out the primes of
bad reduction).

Keep notation as before, but now let ρ : G → GL(V ) be a linear representation of G on
a finite-dimensional complex vector space V . Recall that ρ is determined up to isomorphism
by its character χ : G → C, defined by χ(g) = Trace(ρ(g)). The dimension of V is also
called the degree of χ, although this is confusing. When dim(V ) = 1, ρ and χ are basically
the same thing.

We can think of a linear representation as giving (and being given by) a left C[G]-module
structure on V , where C[G] is the (not necessarily commutative!) group algebra of G over C.
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IfH is a subgroup of G andW is a left C[H]-module, then C[G]⊗C[H]W is a left C[G]-module.
The corresponding operation on representations is called induction of a representation (or
its character) from H to G.

Here’s a crucial about linear representations of finite groups. See for instance Serre’s
Linear Representations of Finite Groups.

Theorem 15.1 (Brauer). Every character of G is a Z-linear combinations of one-dimensional
characters induced from subgroups of G.

So far we’ve just been talking about G as an abstract group. Now let’s add the Ga-
lois theory. For g ∈ G not equal to e, put aG(g) = −f(L/K)iG(g). Then set aG(g) =
f(L/K)

∑
g 6=e iG(g), to ensure that

∑
g∈G aG(g) = 0. Define the conductor of χ (or of ρ) to

be the rational number

f(χ) =
1

#G

∑

g∈G

aG(g
−1)χ(g).

We can make the same definition for any class function (i.e., any conjugacy-invariant func-
tion) on G.

If we define χ(H) for H a subgroup of G to mean the average of χ over H, it is elementary
to compute that

f(χ) =
∞∑

i=0

#Gi

#G0

(χ(1)− χ(Gi)).

Easy corollary:

f(χ) =
∑

i

#Gi

#G0

codimV Gi ,

where V Gi is the subspace of V fixed by Gi.

Proposition 15.2. Let H be a subgroup of K corresponding to the subextension K ′/K. Let
λ be the K-valuation of the discriminant of K ′ over K. Then the restriction of aG to H
equals λrH + f(K ′/K)aH , where rH equals the character of the regular representation of H
(which equals #H on the identity element and 0 elsewhere).

Proof. For g 6= e in H, the claim follows by writing aG(g) = −fL/KiG(g) and similarly for
H, noting that rH(s) = 0, and observing that iG(g) = iH(g). For g = e, this reduces to the
transitivity of the discriminant.

By Frobenius reciprocity for characters, we deduce the following.

Corollary 15.3. For χ a character of H and χ∗ the induced character on H,

f(χ∗) = λχ(1) + f(K ′/K)f(χ).

Corollary 15.4. Given a one-dimensional character χ with kernel H, let K ′ be the subexten-
sion of L/K corresponding to H. If K ′/K is unramified, then f(χ) = 0; otherwise, f(χ)− 1
is equal to the largest ramification break of G/H for the upper numbering.
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Theorem 15.5 (Artin). The conductor f(χ) is always an integer. Equivalently, the function
aG is itself the character of a linear representation (since f(χ) is the inner product of this
character with χ).

In the case of dimension 1, this is the Hasse-Arf theorem (for which I still owe you a
proof). The general case reduces to this using Brauer’s theorem and Corollary 15.3.

Corollary 15.4 has the following useful generalization: if χ is an irreducible character of
dimension d with kernel H, then f(χ) = d(1+ i) for i the largest ramification break of G/H
for the upper numbering (taking this to be −1 if there are no breaks at all).

16 Statements of local class field theory

We now describe the formalism of local class field theory, the classification of abelian exten-
sions of a local field K with finite residue field. By our earlier classification of local fields,
K is either a finite extension of Qp, or is isomorphic to a power series field Fq((t)). Let K

ab

be the maximal abelian extension of K, i.e., the compositum of all finite abelian extensions
of K within some algebraic closure of K. For example, if K = Qp, then K

ab is the union of
the cyclotomic extensions Qp(ζn) by the local Kronecker-Weber theorem.

Theorem 16.1 (Local reciprocity law). There is a unique map φK : K× → Gal(Kab/K)
satisfying the following conditions.

(a) For any uniformizer π in K and any finite unramified extension L of K, φK(π) acts
on L as the Frobenius automorphism. (That is, it acts on the residue field of L as the
q-th power map.)

(b) For any finite abelian extension L ofK, φK induces an isomorphism K×/NormL/K(L
×) →

Gal(Kab/K) → Gal(L/K).

This says that abelian subgroups of K are identified by the norm groups. One can of
course take norm groups for nonabelian extensions, but this doesn’t add anything.

Theorem 16.2 (Norm limitation theorem). Let L be a finite Galois extension of K, and let
M/K be the maximal abelian subextension. Then NormL/K(L

×) = NormM/K(M
×).

There is a converse which says that every possible norm group arises from some abelian
extension.

Theorem 16.3 (Local existence theorem). For every open subgroup U of K×, there exists
a finite abelian extension L of K such that U = NormL/K(L

×).

The ramification filtration shows up as follows. (The Hasse-Arf theorem guarantees that
we see all of the ramification breaks this way.)

Theorem 16.4 (Ramification filtration). For L a finite abelian extension of K, G =
Gal(L/K), and i a nonnegative integer, the inverse image of Gi under φK : K× → G is
the group UK

i of units in oK congruent to 1 modulo πi (for π a uniformizer of K).

The proofs of these results involve some homological algebra involving the actions of
Galois groups; we turn to this next.
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17 Galois homology and cohomology

Let G be a finite group. A left G-module will be the same thing as a left Z[G]-module, for
Z[G] the (not necessarily commutative!) group algebra of G over the ring Z. That is, a left
G-module is an abelian group equipped with a left action of G.

From general results in homological algebra (see your favorite graduate algebra text),
one obtains a collection of functors M  H i(G,M) from left G-modules to abelian groups,
with the property that H0(G,M) =MG (the subgroup of invariants), and every short exact
sequence

0 →M → N → P → 0

gives rise to a long exact sequence

0 →MG → NG → PG → H1(G,M) → H1(G,N) → H1(G,P ) → H2(G,M) → · · · .

That is, the H i(G,M) resolve the fact that taking invariants is left exact but not right exact.
Also, any commuting diagram

0 // M1
//

��

N1
//

��

P1
//

��

0

0 // M2
// N2

// P2
// 0

gives rise to a commuting diagram

0 // H0(G,M1) //

��

H0(G,N1) //

��

H0(G,P1) //

��

H1(G,M1) //

��

· · ·

0 // H0(G,M1) // H0(G,N2) // H0(G,P2) // H1(G,M2) // · · ·

There is a fairly explicit description of these groups, but we won’t have much use for it
except for i = 1 and maybe i = 2.

If you think as the invariants MG of a left G-module M as comprising the largest sub-
module of M on which G acts trivially, it is natural to dualize and form the largest quotient
of M on which G acts trivially. In other words, take the quotient by the subgroup generated
by g(x) − x for all g ∈ G, x ∈ M ; this gives the group MG of coinvariants. The functor of
coinvariants is right exact, so more general homological algebra produces covariant functors
M  Hi(G,M) with the property that H0(G,M) =MG, and every short exact sequence

0 →M → N → P → 0

gives rise to a long exact sequence

· · · → H2(G,P ) → H1(G,M) → H1(G,N) → H1(G,P ) →MG → NG → PG → 0.
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The two long exact sequences glue together as follows. Define the map NormG :M →M by
the formula

NormG(x) =
∑

g∈G

g(x).

(You might prefer to call this trace, but it’s more common to think of M as being a multi-
plicative group.) The Tate cohomology groups are then defined as follows:

H i
T (G,M) =





H i(G,M) i > 0

MG/NormG(M) i = 0

ker(NormG)/IGM i = −1

H−i−1(G,M) i < −1.

Here IG denotes the augmentation ideal of Z[G], i.e., the kernel of the homomorphism
Z[G] → Z mapping each group element to 1. (Note that MG = M/IGM and that IGM ⊆
ker(NormG).) Now a short exact sequence 0 → M → N → P → 0 turns into a doubly
infinite sequence

· · ·H−2
T (G,P ) → H−1

T (G,M) → H−1
T (G,N) → H−1

T (G,P ) →
→ H0

T (G,M) → H0
T (G,N) → H0

T (G,P ) → H1
T (G,M) → · · · .

The Tate cohomology groups might look a bit mysterious, except in indices i = 0 and i = −1
where we have explicit formulas for them. An important fact that helps us compute them is
that H i

T (G,Z[G]) = 0 for all i ∈ Z.

Lemma 17.1. For any G-module M , if we equip Z[G]⊗ZM with the diagonal G-action, we
have H i

T (G,Z[G]⊗Z M) = 0 for all i ∈ Z.

Proof. Suppose first thatM carries the trivial action. IfM is a free Z-module, then Z[G]⊗Z

M is a free Z[G]-module and so the claim follows. Otherwise, since Z is a principal ideal
domain, given any surjection F1 → M of Z-modules with F1 free, the kernel F2 is also free.
Now take the long exact sequence associated to

0 → Z[G]⊗Z F1 → Z[G]⊗Z F2 → Z[G]⊗Z M → 0

and use the previous observation.
In general, we can rewrite Z[G] ⊗Z M ∼= Z[G] ⊗Z N for N a copy of the underlying

Z-module of M , but with the trivial action: the map takes g ⊗ x to g ⊗ g−1(x). We may
then apply the previous paragraph.

One important case for local class field theory: from the sequence

0 → IG → Z[G] → Z → 0
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and the vanishing of cohomology in the middle (Lemma 17.1), we getH−2
T (G,Z) ∼= H−1

T (G, IG) =
IG/I

2
G. This turns out to be canonically isomorphic to Gab. This means that for G =

Gal(L/K), to produce the local reciprocity law it is enough to exhibit a map

Gal(L/K)ab = H−2
T (G,Z) → H0

T (G,L
×) = K×/NormL/K(L

×),

and this is exactly how we will proceed to do so.
Here’s a case where the explicit formulas at i = 0 and i = −1 suffice to compute all of

the cohomology groups explicitly!

Lemma 17.2 (Tate). If G is a cyclic group, then there is a isomorphism H i
T (G,M) →

H i+2
T (G,M) for each i ∈ Z and each G-module M . Moreover, this isomorphism is functorial

in M .

Proof. Choose a generator g of G. The key here is the exact sequence of left Z[G]-modules

0 → Z → Z[G] → Z[G] → Z → 0

in which the first map is 1 7→ [1], the second is [h] 7→ [gh]−[h], and the third is [h] → 1. Since
everything is a free Z-module, tensoring over Z with M and taking the diagonal G-actions
produces another exact sequence

0 →M → Z[G]⊗Z M → Z[G]⊗Z M →M → 0

of left G-modules, using the diagonal action on the tensor products. Split this into two short
exact sequences

0 →M → Z[G]⊗Z M → P, 0 → P → Z[G]⊗Z M →M → 0.

Note that Z[G] ⊗Z M has zero Tate cohomology groups by Lemma 17.1, so by taking long
exact sequences we get

H i+1
T (G,P ) ∼= H i+2

T (G,M), H i
T (G,M) ∼= H i+1

T (G,P ).

This gives the claim.

In order to do induction on the size of G, we need to relate cohomology groups for different
G. This depends on the fact that group cohomology is functorial in G in the following sense:
if G → G′ is a group homomorphism, and M is a left G′-module, then we can view M
also as a left G-module, and we get maps H i(G′,M) → H i(G,M) that are natural in the
groups (i.e., composing group homomorphisms does what you want) and inM . For instance,
for i = 0, this is the natural inclusion MG′ → MG. (The general case follows from this by
realizing that H i(G,M) is obtained by taking an injective resolution ofM , taking invariants,
then taking the homology of the resulting complex.)

Lemma 17.3. For any G-moduleM , H i
T (G,HomZ(Z[G],M)) = 0 for all i ∈ Z. (The action

of G on HomZ(Z[G],M) is such that g ∈ G acts taking f : Z[G] → M to f ′ : Z[G] → M
with f ′(h) = g(f(hg)).)
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Proof. Again for M = Z with the trivial action, this holds because Z[G] ∼= HomZ(Z[G],Z)
via the map taking g to the homomorphism taking h to 1 if h = g and 0 otherwise. We
thus deduce the claim for M free with the trivial action, and then argue for arbitrary M
with the trivial action as in Lemma 17.3. Finally, for general M , rewrite HomZ(Z[G],M) ∼=
HomZ(Z[G], N) for N the underlying Z-module of M , by sending the map f : G → M to
the map f ′ : G→ N with f ′(g) = g−1(f(g)).

Lemma 17.4 (Inflation-restriction sequence). Let G be a finite group, let H be a normal
subgroup of G, and let M be a left G-module. Then the sequence

0 → H1(G/H,MH) → H1(G,M) → H1(H,M)

is exact. If moreover H1(H,M) = 0, then the sequence

0 → H2(G/H,MH) → H2(G,M) → H2(H,M)

and so on.

Proof. The first assertion is most easily proved by expressing H1(G,M) in terms of crossed
homomorphisms. Namely, H1(G,M) consists of maps f : G→M satisfying

f(gh) = g(f(h)) + f(h),

modulo maps of the form f(g) = g(x) − x for some h ∈ M . With this interpretation, if f
is a crossed homomorphism which becomes trivial on H, then we can choose x ∈ M with
f(h) = h(x) − xfor all h ∈ H, and then g 7→ f(g) − g(x) + g is a well-defined crossed
homomorphism on G/H with values in MH .

We reduce the second assertion to the first by shifting dimensions. PutN = HomZ(Z[G],M);
this module receives a map from M taking x to the map g → g(x). Form the exact sequence

0 →M → N → P → 0

and note that
0 →MH → NH → PH → H1(H,M) = 0

is exact. We now get a commuting diagram

0 // H1(G/H,PH) //

��

H1(G,P ) //

��

H1(H,P )

��

0 // H2(G/H,MH) // H2(G,M) // H2(H,M)

in which the vertical arrows are isomorphisms becauseN has zero cohomology by Lemma 17.3.

42



18 Tate’s criterion for local class field theory

Recall that to establish the local reciprocity law, we need to produce an isomorphism

Gal(L/K)ab = H−2
T (G,Z) → H0

T (G,L
×) = K×/NormL/K(L

×).

We’ll now show Tate’s group-theoretic method for doing so. (This can be generalized by
setting up the notion of a class formation, thus providing an approach to global class field
theory.)

Lemma 18.1. Let G be a finite solvable group. Let M be a left G-module. Suppose that for
each subgroup H of G, H1(H,M) = H2(H,M) = 0. Then H i

T (G,M) = 0 for all i ∈ Z.

Proof. We first check that H0
T (G,M) = 0. For G cyclic, this follows from Lemma 17.2. To

prove the general case, induct on #G. If G is solvable and not cyclic, we can find a subgroup
H such that G/H is cyclic and not trivial. By the induction hypothesis, H i

T (H,M) = 0 for
all i ∈ Z. Also, since H1(H,M) = 0,

0 → H2(G/H,MH) → H2(G,M) → H2(H,M)

is exact by inflation-restriction (Lemma 17.4), so H2(G/H,MH) = 0. By Lemma 17.2,
H0
T (G/H,M

H) = 0, so any x ∈ MG has the form NormG/H(y) for some y ∈ MH . Since
H0
T (H,M) = 0, y = NormH(z) for some z ∈ M , and so x = NormG(z). Hence H

0
T (G,M) =

0.
Now make the exact sequence

0 → N → Z[G]⊗Z MZ →M → 0

in which MZ is the underlying Z-module of M with the trivial G-action, and the right
nontrivial arrow maps g⊗x to g(x). The middle term has zero cohomology by Lemma 17.1,
so we get dimension shifting isomorphisms H i

T (G,M) ∼= H i+1
T (G,N). In particular,

H1(G,N) = H1
T (G,N) ∼= H0

T (G,M) = 0,

H2(G,N) = H2
T (G,N) ∼= H1

T (G,M) = H1(G,M) = 0,

so N satisfies the same hypotheses asM . So for any index i, if I can deduce that H i
T (G,M) =

0 for all M satisfying the hypothesis, then I can deduce the same for i+ 1 and i− 1. Since
I have this for i = 0, I get the same for all i ∈ Z as desired.

Lemma 18.2. Let G be a finite solvable group, and let H be a subgroup of G. Then there
are isomorphisms H i

T (H,Z)
∼= H i+1

T (H, IG) for all i ∈ Z. In particular,

H1
T (H, IG)

∼= H0
T (H,Z) = Z/(#H)Z

H2
T (H, IG)

∼= H1
T (H,Z) = 0.
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Proof. The isomorphisms H i
T (H,Z)

∼= H i+1
T (H, IG) come from the exact sequence 0 → IG →

Z[G] → Z → 0 and the fact that Z[G] is a free Z[H]-module (and Lemma 17.1). The
computation of H0

T (H,Z) is immediate, since the norm map on Z is multiplication by #H.
Also, H1

T (H,Z) = H1(H,Z) = Hom(H,Z) because crossed homomorphisms to a trivial
H-module are just homomorphisms, but Hom(H,Z) = 0 because H is finite.

Theorem 18.3 (Tate). Let G be a finite solvable group. Let M be a left G-module. Suppose
that for each subgroup H of G, H1(H,M) = 0 and H2(H,M) is cyclic of order #H. Then
there are isomorphisms H i

T (G,Z) → H i+2
T (G,M) which are canonical up to the choice of a

generator of H2(G,M).

Proof. Choose a generator γ of H2(G,M). For any subgroup H of G, the inclusion map
MG → MH and the norm map NormG/H : MH → MG extend to maps H i(G,M) →
H i(H,M) and H i(H,M) → H i(G,M) (called the restriction and corestriction maps, re-
spectively) whose composition is multiplication by [G : H] on H i(G,M). It follows that γ
also generates H2(H,M).

We first set up an exact sequence

0 →M →M [φ] → IG → 0

of left G-modules in which the map H2(H,M) → H2(H,M [φ]) is set up to be zero for
any subgroup H of G. This is most easily expressed by describing H i(G,M) in terms of
cocycles and coboundaries. Let Cr(G,M) be the set of maps Gr → M (with no structural
restrictions). We define a differential dr : Cr(G,M) → Cr+1(G,M) by setting

(drφ)(g1, . . . , gr+1) = g1(φ(g1, . . . , gr))+
r∑

j=1

(−1)jφ(g1, . . . , gjgj+1, . . . , gr+1)+(−1)r+1φ(g1, . . . , gr).

We may then identify Hr(G,M) with the r-th homology of this complex.
Choose φ ∈ C2(G,M) representing γ. Let M [φ] be the direct sum of φ with the free

abelian group on symbols xg for g ∈ G− {e}, and extend the action of G by setting

g(xh) = xgh − xg + φ(g, h).

One checks using the cocycle condition that this gives a well-defined action. Note that by
construction, φ is the differential of the cochain g 7→ xg. We thus have the desired sequence

0 →M →M [φ] → IG → 0

in which γ is killed by the map H2(H,M) → H2(H,M [φ]). Given this, by Lemma 18.2 we
have an exact sequence

0 = H1(H,M) → H1(H,M [φ]) → H1(H, IG) → H2(H,M) → H2(H,M [φ]) → H2(H, IG) = 0.

By construction, the map H2(H,M) → H2(H,M [φ]) is the zero map, so H2(H,M [φ]) = 0.
Also, H1(H, IG) → H2(H,M) is surjective and both sides have order #H by Lemma 18.2,
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so the map is also injective. Hence H1(H,M [φ]) → H1(H, IG) is the zero map, forcing
H1(H,M [φ]) = 0.

By Lemma 18.1,M [φ] has trivial Tate cohomology groups. We thus get dimension shifting
isomorphisms H i+1

T (G, IG) → H i+2
T (G,M), which when combined with the isomorphisms

H i
T (G,Z) → H i+1

T (G, IG) from Lemma 18.2 yield the claim.

19 Cohomology of local fields

We now make the calculations to apply Tate’s theorem to produce the local reciprocity map.

Lemma 19.1. For any finite Galois extension L of K, for G = Gal(L/K), H1(G,L×) = 0.

Proof. This is true for any field K by Hilbert’s Theorem 90. (More exactly, Hilbert proved
this in the cyclic case; the general case is due to Speiser.)

For G cyclic and M a G-module, the Herbrand quotient of M is the ratio h(M) =
#H0

T (G,M)/#H−1
T (G,M) assuming that this is finite.

Lemma 19.2. Let G be a cyclic group. Let 0 →M → N → P → 0 be a short exact sequence
of G-modules. Then h(M)h(P ) = h(N).

Proof. The long exact sequence folds into a hexagon by Lemma 17.2, from which the claim
is clear.

Lemma 19.3. Let G be a cyclic group. For any finite G-module M , h(M) = 1.

Proof. Let g be a generator of G. Then the sequences

0 →MG →M →M →MG → 0

0 → H−1
T (G,M) →MG

NormG→ MG → H0
T (G,M) → 0

are exact if we define the map M →M to take x to g(x)− x. Consequently, #MG = #MG

and hence #H−1
T (G,M) = #H0

T (G,M), proving the claim.

Lemma 19.4. The group H2(G,L×) has order at most [L : K].

Proof. By Lemma 19.1 plus Lemma 17.4, forM a Galois subextension with H = Gal(L/M),
the sequence

0 → H2(G/H,M×) → H2(G,L×) → H2(H,L×)

is exact. Consequently, if we check the claim for L/M and M/K, it then follows for L/K.
Since G is solvable, we may reduce to the case of G cyclic. In this case, we may replace
H2(G,L×) = H2

T (G,L
×) with H0

T (G,L
×) by Lemma 17.2. In fact, we need only compute

that h(L×) = [L : K]. By Lemma 19.2, h(L×) = h(Z)h(UL). We already computed
h(Z) = #G = [L : K]. It is easy to check that UL admits an open subgroup of finite index V
which is a free Z[G]-module: namely, by taking logarithms, we reduce to the corresponding
question for oL, which we essentially did already in the section on norm calculations. Since
UL/V is finite, h(UL/V ) = 1 by Lemma 19.4 and so h(UL) = h(V ) = 1. This proves the
claim.
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Lemma 19.5. If L/K is unramified, then H2(G,L×) is cyclic of order [L : K].

Proof. By Lemma 17.2, we may instead compute H0
T (G,L

×) = K×/NormL/K(L
×). But

we already checked that the valuation defines a bijection between this group and Z/nZ for
n = [L : K].

Lemma 19.6. The group H2(G,L×) is cyclic of order [L : K].

Proof. Put n = [L : K]. Let’s write H2(L/K) as shorthand for H2(Gal(L/K), L×). Let M
be the unramified extension of K of degree n. We have a diagram

H2(M/K) //

��

H2(ML/L)

��

0 // H2(L/K) // H2(ML/K) // H2(ML/L)

in which the bottom row is exact and the vertical arrows are injective (by inflation-restriction).
It’s enough to show that the top horizontal arrow is zero; then we can push a generator of
H2(M/K) down to H2(ML/K), where it will arise from an element of H2(L/K) of order n.

Since unramified extensions are cyclic, we may rewrite the map H2(M/K) → H2(ML/L)
asH0

T (M/K) → H0
T (ML/L) by Lemma 17.2. This is the natural mapK×/NormM/K(M

×) →
L×/NormML/L(L

×). The former is a cyclic group of order n = e(L/K)f(L/K) generated
by a uniformizer πK of K, while the latter is a cyclic group of order e(L/K) generated by a
uniformizer πL of L. Since πK has valuation e in L, its image is zero, proving the claim.

For L/K finite Galois, we now plug into Tate’s theorem to get the mapK×/NormL/K(L
×) →

Gal(L/K)ab.
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