
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 1

1. Identify R4 with the space of quaternions {a + bi + cj + dk : a, b, c, d ∈ R}. Then the
function (a+bi+cj+dk) 7→ i(a+bi+cj+dk) = −b+ai−d+cj defines an everywhere
nonzero section of the tangent bundle.

2. (a) Let {Ui}i∈I be an open cover of an open subset U of X. The map F(U) →∏
i∈I F(Ui) is injective because a function g : U → Y is determined by its restric-

tions to any set-theoretic cover. To check the rest of the sheaf property, choose
gi ∈ F(Ui) such that gi|Ui∩Uj

= gj|Ui∩Uj
. Define the function g : U → Y by set-

ting g(x) = gi(x) for any index i ∈ I for which x ∈ Ui; this is well-defined because
all choices of i give the same answer. Then (f ◦ g)(x) = (f ◦ gi)(x) = x, so f ◦ g
equals the inclusion U → X. For any open subset W of Y , g−1(W ) = ∪i∈Ig−1i (W )
is open in U , so g is continuous. Hence g ∈ F(U), so F is a sheaf.

(b) We define a basis of open sets as follows. For each open subset U of X and
each g ∈ G(U), include the set Vg,U = {gx : x ∈ U}. To check that this is a
basis, we must check that Vg,U ∩ Vg′,U ′ can be written as a union of open sets, or
equivalently, for any point y ∈ Vg,U ∩ Vg′,U ′ we can find a basic open subset of
Vg,U ∩ Vg′,U ′ containing y. Namely, put x = f(y). The fact that y ∈ Vg,U ∩ Vg′,U ′

means that gx = g′x, so on some open subset U ′′ of U ′ ∩U ′′ we have g|U ′′ = g′|U ′′ .
Let g′′ ∈ G(U ′′) be the restriction of g to U ′′; then y ∈ Vg′′,U ′′ ⊆ Vg,U ∩Vg′,U ′ . This
completes the proof that the Vg,U form a basis.

To check that F = G, we first check that for every open set U ⊆ X and every
g ∈ G(U), the corresponding function g̃ : U → Y is continuous. It is enough
to check that for every open set Vg′,U ′ , the set g̃−1(Vg′,U ′) is open. For each
x ∈ g̃−1(Vg′,U ′), we have gx = g′x, so there exists an open subset U ′′ of U ∩U ′ such
that g|U ′′ = g′|U ′′ . Then x ∈ U ′′ ⊆ g̃−1(Vg′,U ′), so g̃−1(Vg′,U ′) contains an open
neighborhood of each of its points; therefore it is open.

We next check that any continuous function h : U → Y corresponds to a section of
G. Since G is a sheaf, it is enough to check this locally around a point x ∈ U . By
the definition of Gx, we can find an open subset U ′ of U and a section g ∈ F(U ′)
such that gx = h(x). Since h is continuous, h−1(Vg′,U ′) is open; since it contains
x, it also contains an open subset U ′′ of X containing x. But then the restriction
of h to U ′′ corresponds to the section g|U ′′ ∈ F(U ′′), as claimed.

(c) For U an open subset of X, we must check that f−1(U) is open. To see this, pick
any y ∈ f−1(U) and put x = f(y); then y ∈ Gx. We can thus find an open subset
U ′ of U and a section g ∈ G(U ′) such that gx = y; then Vg,U ⊆ f−1(U). Therefore,
f−1(U) contains an open neighborhood of each of its points, and so is open.

Side remark: with this topology on Y , the map f is a covering space map in the sense
of point-set topology.
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3. Let PreX and SheX denote the categories of presheaves on X and sheaves on X,
respectively. The adjoint property means the property: for F ∈ PreX and G ∈ SheX ,
there is a bijection

MorPreX (F ,G)→ MorSheX (F̃ ,G)

which is functorial in both F and G.

Let f : F → G be a map of presheaves. This then defines a map fx : Fx → Gx on
stalks for each x ∈ X. To see that this defines a map of sheaves, we must check that
for any open subset U of X and any s ∈ F̃(U), the elements fx(sx) ∈ Gx come from
a section of G. Since G is already a sheaf, it is enough to check this locally around an
arbitrary point x ∈ U . But by the definition of F̃ , there must exist some open subset
U ′ of U containing x such that the stalks of s within U ′ all come from a single section
s′ of F . Then f(s) ∈ G(U ′) has the desired property that f(s)y = fy(sy) for all y ∈ U ′.

Going the other way, let f̃ : F̃ → G be a morphism of sheaves. Recall that by
construction, there is a morphism F → F̃ of presheaves which is an isomorphism on
stalks. By composing with f̃ , we get a morphism f : F → G of sheaves.

We still have to check that composing these two maps either way is the identity on
either side. The point here is that because G is a sheaf, objects on either side are
determined by their actions on stalks, which are “the same” if we identify stalks of F
and F̃ in the usual way.

4. We divide the points of SpecZ into four subsets.

• The generic point SpecQ has a unique point SpecQ(i) in its fiber.

• The point (2) has a unique point (1 + i) in its fiber.

• The points (p) for p a prime congruent to 3 modulo 4 each have a unique point
(p) in their fibers.

• The points (p) for p a prime congruent to 1 modulo 4 each have two points in
their fibres: by Fermat’s theorem one can write p = a2 + b2 for some a, b ∈ Z, and
then the ideals (a + bi) and (a− bi) are distinct prime ideals in SpecZ[i].

5. These come in two types: ideals of the form (x− a) with a ∈ R, and ideals of the form
(x2 + ax + b) with a, b ∈ R and x2 + ax + b irreducible. The ideals of the second type
correspond to pairs of complex conjugates in C.

6. (a) The sheaf O(1) is generated by its global sections, which are the homogeneous
polynomials of degree 1. These pull back to homogeneous polynomials of degree
d, which are sections of O(d).

(b) The sheaf O(1) is generated by its global sections, which are the homogeneous
polynomials of degree 1. These pull back to homogeneous polynomials of bidegree
(1, 1), which are sections of the external product O(1) �O(1).
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7. This can be done purely in the language of commutative algebra, but we indicate the
following proof in order to illustrate ideas from the lectures so far. Suppose first that
X = Spec(R) can be written as the disjoint union of two nonempty open subsets U1, U2.
Then there is a section e1 ∈ OX(X) which restricts to 1 on U1 and 0 on U2, and a
section e2 ∈ OX(X) which restricts to 1 on U2 and 0 on U1. We proved in class that the
natural map R → OX(X) is an isomorphism. To check that e1, e2 satisfy e1 + e2 = 1,
e21 = e1, e

2
2 = e2, it is enough to check this at the level of sections, which we may do

on U1 and U2 separately.

Suppose next that e1, e2 are nonzero idempotents which add up to 1. Then V (e1), V (e2)
are closed subsets of X; they are disjoint because e1 and e2 generate the unit ideal,
and they cover X because e1e2 = e1(1− e1) = e1− e21 = 0. Finally, V (e1) is nonempty:
otherwise, e1 would have to generate the unit ideal, so we could find f ∈ R with
e1f = 1; but then e1 = e21f = e1f = 1 and so e2 = 1 − e1 = 0, a contradiction.
Similarly, V (e2) is nonempty, so they form a partition of X into two nonempty closed
sets.
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