
Math 203B (Algebraic Geometry), UCSD, winter 2013
Solutions for problem set 3

1. The property of upper semicontinuity may be checked locally on X, so we may assume
at once that X = Spec(R) is affine, so that F ∼= M̃ for M = F(X). The upper
semicontinuity property states that for any x ∈ X, if dimκ(x)Fx/mxFx = n, then there
exists an open neighborhood U of x in X such that dimκ(y)Fy/myFy ≤ n for all y ∈ U .
To check this, choose any elements m1, . . . ,mn ∈ Fx which form a basis of Fx/mxFx
over κ(x). By Nakayama’s lemma, m1, . . . ,mn generate Fx as a module over OX,x.
Now choose some generators m′1, . . . ,m

′
k of M as an R-module. In Fx, we can write

m′i =
∑

j fijmj for some fij ∈ OX,x. Now find an open neighborhood U of x in X such
that the mi, the fij, and the equality m′i =

∑
j fijmj all lift to U . Then m1, . . . ,mn

generate F(U), so they also generate Fy for all y ∈ U . Therefore dimκ(y)Fy/myFy ≤ n
for all y ∈ U , as desired.

2. By formally differentiation of polynomials, it is clear that ΩR[x1,...,xn]/R is generated by
dx1, . . . , dxn, or in other words that the natural map Rn → ΩR[x1,...,xn]/R taking the
generators of Rn to dx1, . . . , dxn is surjective. The hard part is to make sure that this
map is also injective. Suppose that f1, . . . , fn ∈ R are such that f1 dx1+· · ·+fn dxn = 0.
The partial derivative ∂

∂x1
defines anR-linear derivation fromR toR, which then factors

in some fashion through d : R → ΩR[x1,...,xn]/R. The resulting map ΩR[x1,...,xn]/R → R
sends dx1 to 1 and dx2, . . . , dxn to 0, so we must have f1 = 0. Similarly f2 = · · · =
fn = 0.

3. It suffices to check that for each nonnegative integer k, the residue is invariant when-
ever f has pole order at most k. In this case, we can formally write f = fkT

−k +
· · ·+ f−1T

−1 + · · · , and then the coefficient of T−1 dT in the image of f dT under the
substitution T 7→ a1T + a2T

2 + · · · depends only on f−k, . . . , f−1, a1, . . . , ak. In fact, it
can be written as some polynomial in these quantities with coefficients in Z depending
only on k (not on the ring R).

So now we must check that some specific polynomial in f−k, . . . , f−1, a1, . . . , ak with in-
teger coefficients is equal to the polynomial f−1. But to check that a multivariate poly-
nomial with integer coefficients is identically 0, it suffices to check that its evaluation
at any complex numbers is zero, and this follows immediately from the Cauchy inte-
gral formula from complex analysis: the coefficient of T−1 dT equals 1/(2πi) times the
integral of f dT around any simple closed curve which loops counterclockwise around 0
and is small enough not to contain any other singularities of f . Making a substitution
of the form T 7→ a1T + · · ·+ akT

k (there is no need to include any higher coefficients!)
does not affect the looping property.

4. We use property (i) to define the residue at P = 0. Note that by the previous exercise,
this already satisfies property (ii) for any linear fractional transformation fixing P = 0.
Therefore, we can define the residue at any other point by using property (ii) for a

1



single choice of L which maps 0 to P , and the definition will not depend on the choice
of L.

5. It suffices to check that for any given k, the theorem holds for ω = fdT where f is a
rational function with at most k poles (counted with multiplicity). But then the claim
is an algebraic identity in the coefficients of the numerator and denominator of f , and
the claim that the residues sum to zero is again a statement that a certain universal
polynomial with integer coefficients is identically zero. So again we may reduce to the
case k = C. In that case, we may apply a linear fractional transformation to ensure that
∞ is not a pole, then use the Cauchy integral formula to compute the sum of residues
as 1/(2πi) times the integral over a simple closed curve which loops counterclockwise
around all of the poles. But if we now pull back along T 7→ 1/T , this curve becomes
a simple closed curve which loops clockwise around no poles, so the integral must be
zero.

6. Let g be the genus of C. By Riemann-Roch, h0(C,O((g+1)P )) ≥ deg((g+1)P )+1−g >
1, so there must be a nonconstant function which has no poles other than at P . (For
g > 0, it would have been enough to take gP instead of (g + 1)P .)

7. Let KC be a canonical divisor.

(i) Since h0(C,KC) = g = 2, KC defines a map to P1
k; the degree of this map is

deg(KC) = 2g − 2 = 2.

(ii) To define the map, we must find a divisor D with h0(C,D) = 4 and deg(D) = 5.
But 5 > 2g− 2 = K(C), so in fact any D with degree 5 will satisfy h0(C,D) = 4.
Better yet, for any two points P,Q of C, deg(D − P − Q) = 3 > 2g − 2, so
h0(C,D− P −Q) = 2. Using the criterion described on the next homework, this
implies that we get an embedding.
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