Math 203B (Algebraic Geometry), UCSD, winter 2013
Problem Set 5 (due Wednesday, February 13)

Solve the following problems, and turn in the solutions to four of them.

1. Let \(R \) be a commutative ring. Let \(M \) be an \(R \)-module such that the quasicoherent sheaf \(\tilde{M} \) on \(\text{Spec}(R) \) is locally finitely generated. Prove that \(M \) is itself finitely generated. (If you find yourself needing to assume that \(R \) is noetherian, you are probably not doing this correctly.) For this reason, from now on I will talk about finitely generated quasicoherent sheaves, leaving out the word “locally”.

2. Let \(k \) be an algebraically closed field of characteristic not equal to 2. Prove that for every nonnegative integer \(g \), there exists a curve over \(k \) of genus \(g \). Hint: use hyperelliptic curves and Riemann-Hurwitz. (One can make the argument work in characteristic 2 also, but you needn’t do so here.)

3. Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Let \(f \) be the map of degree from \(X = \mathbb{P}^1 \) (the \(x \)-line) to \(Y = \mathbb{P}^1 \) (the \(y \)-line) for which \(f^*(y) = x^p - x \).
 (a) Prove that \(f \) has no ramification over any of the points of \(\mathbb{A}^1 \).
 (b) Compute the ramification number at \(x = \infty \) by computing the order of \(df^*(y^{-1}) \) at \(x = \infty \) and then adding 1. Notice that it is greater than \(p - 1 \)!
 (c) Compute the naïve ramification number at \(x = \infty \) by computing the lengths of components of the scheme \(X \times_Y \text{Spec}(k(\infty)) \). Notice that it does not match (b)!
 (d) Write out all of the terms of the Riemann-Hurwitz formula for this map. Of course the formula had better hold in this case!

4. In this exercise, we will complete the proof of Riemann-Roch in the special case of smooth plane curves. Let \(k \) be an algebraically closed field. Let \(C \) be a smooth curve of degree \(d \) in \(\mathbb{P}^2 \). Recall that we (mostly) proved on a previous problem set that \(g(C) = \frac{(d - 1)(d - 2)}{2} \).
 (a) Prove that \(h^0(C, \mathcal{O}(n)) = dn - 1 + g \) for \(n \) sufficiently large. (That is, the quantity \(g' \) mentioned in class equals \(g \).)
 (b) Prove that \(\text{deg}(K_C) = 2g - 2 \) using the isomorphism \(\omega_C \cong \mathcal{O}(d - 3) \).

5. Let \(R \) be a ring.
 (a) Let \(\mathcal{F} \) be a locally finitely generated quasicoherent sheaf on the projective space \(\mathbb{P}^d_R \). Prove that for every sufficiently large integer \(n \), there exist finitely many elements of \(H^0(\mathbb{P}^d_R, \mathcal{F}(n)) \) which generate \(\mathcal{F}(n) \). Hint: if \(s \) is a section in \(H^0(D(f), \mathcal{F}) \), then for \(n \) sufficiently large \(f^n s \) extends to a section in \(H^0(\mathbb{P}^d_R, \mathcal{F}(n \text{deg}(f))) \).
(b) Let \(j : X \to \mathbb{P}^d_R \) be a closed immersion, and use it to define the twisting sheaves \(\mathcal{O}(n) \) for \(n \in \mathbb{Z} \). Let \(\mathcal{F} \) be a (locally) finitely generated quasicoherent sheaf on \(X \). Prove that for every sufficiently large integer \(n \), the \(R \)-module \(H^0(X, \mathcal{F}(n)) \) is finitely generated. Hint: push forward to reduce to (a).

6. In this exercise, we address one of the foundational issues in the general construction of sheaf cohomology.

(a) An abelian group \(A \) is \textit{injective} if for any injection \(B \to C \), every morphism \(B \to A \) can be extended (not necessarily uniquely) to a morphism \(C \to A \). Prove that any \textit{divisible} abelian group (i.e., one for which for each positive integer \(n \) the multiplication-by-\(n \) map is surjective) is injective. Hint: using Zorn’s lemma, it suffices to check the injectivity property for an injection \(B \to C \) where \(C/B \) is generated by a single element. Or Google for “Baer’s criterion.”

(b) For any abelian group \(A \), put
\[
A' = \prod_{b \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})} \mathbb{Q}/\mathbb{Z}.
\]
Prove that the evaluation map \(A \to A' \), which takes \(a \) to the tuple whose \(b \)-component is \(b(a) \), is injective. Hint: reduce this to (a).

(c) Let \(X \) be a topological space. Let \(\mathcal{F} \) be a sheaf of abelian groups on \(X \). Define the sheaf \(\mathcal{F}' \) by
\[
\mathcal{F}'(U) = \prod_{x \in U} (\mathcal{F}_x)',
\]
so that there is an obvious injection \(\mathcal{F} \to \mathcal{F}' \). Prove that \(\mathcal{F}' \) is an \textit{injective sheaf}: for any injective morphism \(\mathcal{G} \to \mathcal{H} \) of sheaves of abelian groups on \(X \), every morphism \(\mathcal{G} \to \mathcal{F}' \) can be extended (not necessarily uniquely) to a morphism \(\mathcal{H} \to \mathcal{F}' \). Consequently, the category of sheaves of abelian groups on \(X \) has \textit{enough injectives}.

2