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Notes on the Riemann-Roch theorem

In these notes, we explain to how use sheaf cohomology to prove the Riemann-Roch the-
orem. Note that we need to be careful not to use Riemann-Roch implicitly in the arguments!
(I believe this proof is due to Weil; my exposition is plagiarized from some notes of Ravi
Vakil.)

First, some notation. Let k£ be an algebraically closed field. Let X be a smooth projective
curve over k with function field K. The letter D will always denote a divisor on X. Let
wyx be the canonical sheaf. Let ¢ = dim; H 0(X ,wx) be the genus of X also called the
geometric genus in order to distinguish it from ¢’ = dimy H'(X,Ox). The latter is called
the arithmetic genus; at the end the two genera will turn out to be equal, but we cannot use
this fact in the proof!

Lemma 1. The k-vector spaces H*(X,Ox (D)) and H'(X,Ox (D)) have finite dimension.
Proof. Proved in lecture. See also Hartshorne, Theorem II1.5.2. O]

We will have two different types of Fuler characteristic which will ultimately coincide,
but again we will not discover this until later. Define

Xa(D) = dlmk HO(X, Ox(D)) - dlmk H1<X, OX<D)>
Xg(D) = dimy, H°(X, Ox (D)) — dimy H*(X,wx(—D)).
Using xq, we can already derive the Riemann inequality except with g replaced by ¢'.

Lemma 2. For all D,
Xa(D) = deg(D) +1—4"
In particular, dimy, H°(X,Ox(D)) > deg(D) +1—¢'.

Proof. Since the equality is obvious if D = 0, it is enough to check that for any closed point
PeX,
Xa(D+P) _Xa(D) = 1.

To see this, recall that from the short exact sequence
0—Ox(D)— Ox(D+P)—kp—0 (1)
we get a long exact sequence

0— H°(X,0x(D)) = H*(X,Ox(D + P)) = H*(X,kp) —
— HY(X,0x (D)) - H'(X,Ox(D + P)) — H' (X, kp) — 0.

Since dimy, HY(X, kp) = 1 and dimy H'(X, kp) = 0, this gives the desired equality. O



For P € X a closed point and s a meromorphic differential on X, the residue of P at
s, denoted Resp(s), is computed by choosing a uniformizer ¢ at P, writing s as a formal
Laurent series Y = a;t'dt and extracting the coefficient of t~'dt. It was shown on a

t=—m

previous homework that this does not depend on the choice of t.

Lemma 3. Let f : X — P}, be a nonconstant morphism. Lett be a coordinate on P}. Choose
g € K and put h = Traceg i) g. Then for each closed point P € P},

Z Resg(g dt) = Resp(hdt).
Qef~1(P)

Proof. Explicit computation. For a more elegant derivation using a more conceptual defini-
tion of the residue, see Tate’s paper “Residues of differentials on curves”. O]

Lemma 4 (Residue theorem). For s a meromorphic differential on X, the sum of Resp(s)
over all closed points P on X equals 0.

Proof. For X = P4, this was proved on a homework. The general case reduces to this case
via Lemma 3. [

We now use residues to take a closer look at H'(X,Ox (D)) using Weil’s method of
repartitions. Let n be the generic point of X; we can identify n with Spec(K’) and then view
the inclusion 4, : n — X as a morphism of schemes. The sheaf ,,0, on X is quasicoherent
and assigns each nonempty open set to K, so we have a short exact sequence

0— OX — in*On — @ Z'p*(K/OXJD) —0
PeX

where P runs over closed points and ip : Spec(k) — X is the map with image P. Tensor with
Ox (D), which preserves the exact sequence because Ox (D) is locally free. Then identify
(K/Ox.p) ®o, Ox(D) with K/Ox(D)p and take the long exact sequence in cohomology:

0—k— K— @ K/Ox(D)p — H'(X,0(D)) = 0.

pPeX

The last zero is H' (X, .0, ®o, O(D)), which vanishes because the sheaf i,.0, ®0, O(D)
has surjective restriction maps (i.e., it is flasque). We conclude that

HY(X,O(D)) = coker (K o P ox(D)r - P K) : (2)
pPex Pex
where K maps diagonally and the sums over P map term-by-term. Similarly,

HI(X, (,UX(D)) = coker <(,UX’77 D @ wWx,.p — @ me) (3)

pPeX pPeX



where wx , is the stalk at 7, i.e., the space of meromorphic differentials on X. Since Resp
vanishes on wy p and Res = ), Resp vanishes on wx, by Lemma 4, we get a well-defined
map

Res : H'(X,wx) — k.
Using Res, we define a bilinear map
HO(X,wx (D)) x H'(X,0x(=D)) = H'(X,wx) 5 k (4)
and hence a map
H*(X,wx(D)) = H'(X,0x(=D))", (5)
where * denotes the k-linear dual: M* = Homg(M, k). The key statement will be the

following lemma.

Lemma 5. The bilinear map (4) is a perfect pairing; that is, the induced map (5) is an
isomorphism. In particular, g = ¢' (by taking D =0).

It is pretty tricky to prove this directly for a single D; instead, we will prove it for all D si-
multaneously! Suppose D’ is another divisor such that D < D’. Then on one hand there is an
obvious inclusion of H°(X,wx (D)) into H°(X,wx(D')). On the other hand, from the inter-
pretation of H' using (2), there is also an injection H(X, Ox(—D))* — H'(X,Ox(-D"));
or if you prefer, this is the transpose of a map H'(X, Ox(—D)) - H' (X, Ox(—D")), which
one sees is surjective by taking cohomology on the exact sequence

0— Ox(—D) = Ox(-D')—=F =0

and noticing that H'(X, F) = 0 because F is concentrated at finitely many points. In any
case, the diagram

HY(X,wx(D)) —— HYX,Ox(—D))*

| |

HY(X,wx(D")) — HY (X, Ox(=D"))*

commute, so the maps (5) combine to give a single map

JE(X,wx(D)) = | JH' (X, Ox(-D))". (6)

To prove Lemma 5, it is not a priori enough to check that (6) is an isomorphism; one must
also check the following.

Lemma 6. For D < D', if the image of s € H(X,wx (D)) in H (X, Ox(=D"))* belongs
to HY(X,Ox(=D))*, then s € H*(X,wx(D)).



Proof. Suppose on the contrary that s ¢ H°(X,wx(D)). Then there is a closed point P € X
such that ordp((s) + D) < 0 but ordp((s) + D) > 0. In particular, ordp(D’) > ordp(D).
Choose f € K so that ordp((s) + (f)) = —1; then ordp((f) — D) = ordp((f) + (s)) —
ordp((s) + (D)) > —1, so f € Ox(—D)p. Take the class in H'(X,O(—D")) defined by
the element of @, K with f at position P and 0 elsewhere; it then maps to zero in
H'(X,0O(—D)). But s maps this class to Resp(fs) # 0, contradiction. O

With this in hand, we are ready to establish duality.

Proof of Lemma 5. We will instead prove that (6) is an isomorphism. This will imply injec-
tivity of (5) directly and surjectivity using Lemma 6.

By writing K = |J, H°(X,Ox(E)), we may view both sides of (6) as K-vector spaces
and the map as a K-linear transformation. The left side is wx,, the space of meromor-
phic differentials, which is of dimension 1 over K. Moreover, the map is injective by
Lemma 6: if s € H°(X,wx(D)) maps to zero in J, H (X, Ox(—D))*, then it must be-
long to H%(X,wx(D")) for all D’ < D. That is only possible for s = 0.

So to get surjectivity of (6), it is enough to check that the right side is of dimension at
most 1 over K; that is, any two elements of the right side are linearly dependent. This comes
down to an explicit computation using the Riemann inequality, as follows.

Let c¢1,co be two elements of the target of (6); we may as well take them to be in
H'(X,Ox(—D))* for the same D. Let E be a divisor of some degree n (to be chosen later).
If ¢; and ¢y were linearly independent over K, then (f,g) — fec1 + geo would define an
injection of H*(X,Ox(E)) ® H°(X,Ox(E)) into H (X, Ox(—D — E))*, so

If we take n large enough that n+deg(D) > 0, then H*(X, Ox(—D — F)) is forced to vanish,
so by Lemma 2 we have

dimy H(X,O0x(E)) >n+1—¢
dimy H'(X,0x(—=D — E)) = ¢’ — 1+ n + deg(D).

Thus ¢ — 1 +n+deg(D) > 2(n+ 1 — ¢'), but is a contradiction for n large enough. Hence
c1 and ¢y are linearly dependent over K, completing the proof. O]

Lemma 5 plus Lemma 2 together give Riemann-Roch in full.

Theorem 7. We have g = ¢’ and

Xg(D) = deg(D) +1—4".



