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Kiran S. Kedlaya

Notes on sheaf cohomology and Čech cohomology

In these notes, we explain the relationship between sheaf cohomology and Čech cohomol-
ogy, with a special emphasis on quasicoherent sheaves on schemes. Throughout these notes,
let X be a topological space.

1 Lemmas from homework

Lemma 1. For any sheaf F of abelian groups on X, there exists an injective morphism
0→ F → G with G an injective sheaf.

Proof. Homework.

A sheaf F of abelian groups on X is flasque if for any open sets U ⊆ V the restriction
map F(V )→ F(U) is surjective.

Lemma 2. Any injective sheaf is flasque.

Proof. Homework.

Lemma 3. If 0→ F → G → H → 0 is a short exact sequence of sheaves of abelian groups
on X with F flasque, then

0→ F(U)→ G(U)→ H(U)→ 0

is exact for any open subset U of X.

Proof. Homework.

2 Sheaf cohomology

On an upcoming homework, we will construct the sheaf cohomology functors F 7→ H i(X,F)
from the category of sheaves of abelian groups to the category of abelian groups. Note that
even when the sheaves have more structure, we will always compute sheaf cohomology by
ignoring the extra structure. One of the built-in properties of sheaf cohomology (which is
basically a corollary of the snake lemma) is the long exact sequence property: for any short
exact sequence

0→ F → G → H → 0

there is a long exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)
δ0→

→ H1(X,F)→ H1(X,G)→ H1(X,H)
δ1→ · · · .
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More precisely, the maps H i(X,F) → H i(X,G) and H i(X,G) → H i(X,H) are the ones
induced by functoriality, and the connecting homomorphisms δi are also functorial in the
sense that for any commuting diagram

0 // F //

��

G //

��

H //

��

0

0 // F ′ // G ′ //H′ // 0

with exact rows, the diagrams

H i(X,H) δ0 //

��

H i+1(X,F)

��
H i(X,H′) δ0 // H i+1(X,F ′)

also commute.
We say F is acyclic if H i(X,F) = 0 for all i > 0. For example, it will follow from the

construction that any injective sheaf of abelian groups is acyclic. An even stronger statement
is the following.

Lemma 4. Any flasque sheaf is acyclic.

Proof. Homework.

Warning: if one replaces sheaf cohomology with some other left exact functor, then
injective sheaves are still acyclic, but flasque sheaves need not be.

3 Čech cohomology

Let us now recall how Čech cohomology is computed. Let U = {Ui}i∈I be an open cover of
X. The associated Čech complex

0→ Č0(X,F ,U)→ Č1(X,F ,U)→ · · ·

has Čj(X,F ,U) equal to the direct product of the groups F(Ui0∩· · ·∩Uij) for all i0, . . . , ij ∈
I. The map Čj(X,F ,U)→ Čj+1(X,F ,U) acts by

(si0,...,ij)i0,...,ij∈I 7→

(
j+1∑
k=0

(−1)ksi0,...,îk,...,ij

)
i0,...,ij+1∈I

,

where the hat means ik is omitted. The groups Ȟj(X,F ,U) for j ≥ 0 are then defined as

Ȟj(X,F ,U) =
ker(Čj(X,F ,U)→ Čj+1(X,F ,U))

im(Čj−1(X,F ,U)→ Čj(X,F ,U))
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with the convention that Č−1 = 0. Note that Ȟ0(X,F ,U) = H0(X,F), the group of global
sections, no matter what U is; but in general, the groups Ȟj(X,F ,U) will depend on j.

Warning: it is not true in general that the Čech cohomology groups fit into a long exact
sequence, even if one takes the direct limit over all coverings!

We’ll say that F is U-acyclic if Ȟj(X,F ,U) = 0 for all j > 0. We’ll say that F is strongly
Čech-acyclic if there exist a cofinal set of open coverings U (i.e., every open covering can be
refined to one of the given ones) for each of which F is U -acyclic. This implies that F is
Čech-acyclic, meaning that Ȟj(X,F) vanishes for all j > 0.

Lemma 5. If F is injective, then F is U-acyclic for every open cover U , and hence strongly
Čech-acyclic.

Proof. See Stacks Project, Lemma 18.11.1, tag 01EP. More on the argument a bit later.

Lemma 6. If F is flasque, then F is U-acyclic for every open cover U , and hence strongly
Čech-acyclic.

Proof. We will prove that Ȟ i(X,F ,U) = 0 for i = 1, . . . ,m by induction on m, with empty
base case m = 0. Suppose the claim is given for some m. Given F , use Lemma 1 to form
an exact sequence

0→ F → G → H → 0

where G is injective and hence flasque by Lemma 2. Since F is flasque, by Lemma 3

0→ F(U)→ G(U)→ H(U)→ 0

is exact for any open subset U of X. This implies on one hand, H is flasque by the snake
lemma, and the other hand, in this case we do get a long exact sequence on Čech cohomology
groups!

To prove the claim for m = 1, note that surjectivity of H0(X,G) → H0(X,H) means
that

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ Ȟ1(X,F ,U)→ Ȟ1(X,G,U) = 0,

the connecting homomorphism H0(X,H)→ Ȟ1(X,F ,U) is zero. Therefore, Ȟ1(X,F ,U) is
trapped between a zero map and a zero object, so it must be zero.

To prove the claim for m + 1 given the claim for m, note that G is already U -acyclic by
Lemma 5. Hence

0 = Ȟm(X,G,U)→ Ȟm(X,H,U)→ Ȟm+1(X,F ,U)→ Ȟm+1(X,G,U) = 0

is exact and Ȟm(X,H,U) = 0 by the induction hypothesis, so Ȟm+1(X,F ,U) = 0 also.

Lemma 7. If Ȟ1(X,F) = 0, then for any exact sequence 0 → F → G → H → 0 the
sequence

0→ F(X)→ G(X)→ H(X)→ 0

is exact.
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Proof. As usual, it suffices to check that G(X) → H(X) is surjective. Given s ∈ H(X),
there exists an open covering U of X such that for each i ∈ I, s lifts to a section ti ∈ G(Ui).
The differences ti− tj then define an element of Ȟ1(X,F ,U); by hypothesis, we can replace
U by a finer cover so that the element of Ȟ1(X,F ,U) vanishes. That is, there exist elements
ui ∈ F(Ui) with ui − uj = ti − tj; the elements ti − ui then glue to a section in G(X) lifting
s.

Lemma 8. If F|U is Čech-acyclic for each open set U in some basis of the topology of X,
then F is acyclic.

The proof is quite similar to that of Lemma 6.

Proof. We will prove that H i(X,F) = 0 for i = 1, . . . ,m by induction on m, with empty
base case m = 0. Suppose the claim is given for some m. Given F , use Lemma 1 to form
an exact sequence

0→ F → G → H → 0

where G is injective and hence flasque by Lemma 2. By Lemma 7, taking sections over any
open subset in a basis of X gives an exact sequence. By the snake lemma, it follows that H
is flasque and hence Čech-acyclic by Lemma 6.

To prove the claim for m = 1, note that by Lemma 3, H0(X,G)→ H0(X,H) is surjective.
Therefore, in the exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G) = 0,

the connecting homomorphism H0(X,H) → H1(X,F) is zero. Therefore H1(X,F) is
trapped between a zero map and a zero object, so it must be zero.

To prove the claim for m+ 1 given the claim for m, note that

0 = Hm(X,G)→ Hm(X,H)→ Hm+1(X,F)→ Hm+1(X,G) = 0

is exact and Hm(X,H) = 0 by the induction hypothesis, so Hm+1(X,F) = 0 also.

This specializes to the following result (which is not so convenient to prove directly).

Theorem 9. If X is an affine scheme and F is a quasicoherent sheaf on X, then F is
acyclic.

Proof. We proved in class that F is U -acyclic whenever U is a finite cover by distinguished
open affines. But since X is quasicompact, every covering can be refined by such a covering,
so F is strongly Čech acyclic. By Lemma 8, F is also acyclic.

Lemma 10. Let
0→ F → F0 → F1 → · · ·

be an exact sequence of sheaves of abelian groups on X such that Fi is acyclic for all i ≥ 0
(also called an acyclic resolution of F). Then for all i ≥ 0,

H i(X,F) ∼=
ker(Fi(X)→ Fi+1(X))

im(Fi−1(X)→ Fi(X))

with the convention that F−1 = 0.
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Proof. Put G0 = F , then split the exact sequence as

0→ G0 → F0 → G1 → 0

0→ G1 → F1 → G2 → 0

0→ G2 → F2 → G3 → 0

...

From long exact sequences, we have

H i(X,F) = H i(X,G0) ∼= H i−1(X,G1) ∼= · · · ∼= H1(X,Gi−1)

and exact sequences

H0(X,Fi−1)→ H0(X,Gi)→ H1(X,Gi−1)→ 0

0→ H0(X,Gi)→ H0(X,Fi)→ H0(X,Gi+1)

0→ H0(X,Gi+1)→ H0(X,Fi+1).

This yields the desired result. (One can automate this sort of argument using the theory of
spectral sequences, but I won’t talk more about those here.)

This statement also has a converse: if C is a class of sheaves such that the cohomology
of every sheaf can be computed using a resolution with terms in C, then every sheaf in C is
acyclic. The proof is simple: for each F ∈ C, the sequence

0→ F → F0 → · · ·

with F0 = F and Fi = 0 for i > 0 defines a resolution of F , so we must have H i(X,F) = 0
for i > 0!

Lemma 11. Let f : X → Y be a continuous map. If F is acyclic, then so is f∗F .

Proof. We will prove that H i(X,F) = 0 for i = 1, . . . ,m by induction on m, with empty
base case m = 0. Given F , use Lemma 1 to form an exact sequence

0→ F → G → H → 0

where G is injective and hence flasque by Lemma 2. Then

0→ f∗F → f∗G → f∗H → 0

is again exact. Since f∗G is also flasque, it is acyclic.
To prove the claim for m = 1, note that H0(Y, f∗G)→ H0(Y, f∗H) is surjective, so in the

exact sequence

0→ H0(Y, f∗F)→ H0(Y, f∗G)→ H0(Y, f∗H)→ H1(Y, f∗F)→ H1(Y, f∗G) = 0,

5



the connecting homomorphism H0(Y, f∗H) → H1(Y, f∗F) is zero. Therefore H1(Y, f∗F) is
trapped between a zero map and a zero object, so it must be zero.

To prove the claim for m+ 1 given the claim for m, note that

0 = Hm(Y, f∗G)→ Hm(Y, f∗H)→ Hm+1(Y, f∗F)→ Hm+1(Y, f∗G) = 0

is exact and Hm(Y, f∗H) = 0 by the induction hypothesis, so Hm+1(Y, f∗F) = 0 also.

Theorem 12. Let X be a scheme and let F be a quasicoherent sheaf on X. Let U be a finite
open covering such that each nonempty intersection among the elements of U is affine. (For
instance, if X is separated, this happens if each of the individual opens in U is affine.) Then

H i(X,F) ∼= Ȟ i(X,F ,U).

In particular, Ȟ i(X,F ,U) does not depend on U as long as U satisfies these conditions.
A direct proof of this last statement in the case where X is separated and quasicompact
appears in Gathmann, Lemma 8.5.2.

Proof. We make a sheafified version of the Čech complex. For j ≥ 0, let Vj be the disjoint
union of the schemes Ui0 ∩ · · · ∩ Uij for i0, . . . , ij ∈ I, and let ij : Vj → X be the map

obtained by combining the obvious open immersions. Then put Čj(X,F ,U) = ij∗i
∗
jF , so that

H0(X, Čj(X,F ,U)) = Čj(X,F ,U). Since i∗jF is quasicoherent, it is acyclic by Theorem 9,
as then is its pushforward by Lemma 11 (whether or not the pushforward is quasicoherent,
which is only guaranteed if U is a finite cover). So the Čj(X,F ,U) form an acyclic resolution,
so Lemma 10 tells us what we want.

As a corollary, we get the following.

Theorem 13. Let X be a separated scheme and let F be a quasicoherent sheaf on X. Then

H i(X,F) ∼= Ȟ i(X,F).

Proof. Since X is separated, any cover U by open affines satisfies the hypothesis of Theo-
rem 12, so

H i(X,F) ∼= Ȟ i(X,F ,U).

Since covers by open affines are cofinal, this proves the claim.

One can also prove this without assuming X is separated, but it’s a bit more complicated.
In fact, the equality

H i(X,F) ∼= Ȟ i(X,F)

is true in some generality for topological spaces, but sadly not in complete generality (oth-
erwise things would be much easier here!).
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4 δ-functors

A (covariant) δ-functor between abelian categories is a sequence of functors T i plus mor-
phisms δi : T i(C) → T i+1(A) for each short exact sequence 0 → A → B → C → 0, such
that every short exact sequence 0→ A→ B → C → 0 gives rise to a long exact sequence

0→ T 0(A)→ T 0(B)→ T 0(C)
δ0→

→ T 1(A)→ T 1(B)→ T 1(C)
δ1→ · · · .

and for any commuting diagram

0 // A //

��

B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0

with exact rows, the diagrams

T i(C) δ0 //

��

T i+1(A)

��
T i(C ′) δ0 // T i+1(A′)

also commute. In particular, T 0 must be left exact. For example, the sheaf cohomology
groups T i(F) = H i(X,F) form a δ-functor.

A universal δ-functor is one for which given another δ-functor (T ′)i between the same
two categories, any natural transformation f 0 : T 0 → (T ′)0 of functors extends uniquely to
a collection of natural transformations f i : T i → (T ′)i which commute with the δ maps. It
can be shown directly that if the source category has enough injectives, then the derived
functors of a left exact functor have this property, but this also follows from a more general
result which can be applied even without having enough injectives.

A functor F is coeffaceable if for each object A in its source category, there is a monomor-
phism A→ B whose image under F is the zero morphism. For example, for i > 0, the functor
H i(X, ·) is coeffaceable because injective sheaves are acyclic and the category of sheaves of
abelian groups has enough injectives.

Theorem 14. Let T i be a covariant δ-functor such that T i is coeffaceable for all i > 0. Then
T i is a universal δ-functor.

In particular, sheaf cohomology forms a universal δ-functor.

Proof. (Taken from Stacks Project, Lemma 10.9.4, tag 010T). Let (T ′)i be another δ-functor
and let f 0 : T 0 → (T ′)0 be a natural transformation of functors. Given f 0, . . . , fn, we
construct fn+1 as follows. Given A, make an injection A → B with T n+1(A) → T n+1(B)
the zero morphism, and complete to a short exact sequence 0→ A→ B → C → 0. By the
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long exact sequence, T n+1(A) ∼= coker(T n(B) → T n(C)). We then define tn+1
A : T n+1(A) →

(T ′)n+1(A) as the unique map making the diagram

coker(T n(B)→ T n(C)) tn //

��

coker((T ′)n(B)→ (T ′)n(C))

��
T n+1(A)

tn+1
A // (T ′)n+1(A)

commute. Some annoying details (like functoriality) omitted.

One may be tempted to use Theorem 14 to compare sheaf cohomology and Čech coho-
mology, but the latter does not in general define a δ-functor. However, if we view it as a
functor on presheaves then it does define a δ-functor. This, plus the fact that an injective
sheaf of groups is also injective in the category of presheaves, yields Lemma 5.
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