Math 203B: Algebraic Geometry
UCSD, winter 2016, Kiran S. Kedlaya
Affine schemes

In this lecture, we start with a ring R and construct from it an affine scheme in a
manner analogous to the construction of an affine variety. Basic commutative algebra will
be assumed; see Atiyah-Macdonald if you need a refresher.

See also: Hartshorne 11.1, 11.2.

1 The Zariski prime spectrum

We start with the underlying topological space. Let Spec(R) be the set of prime ideals of
R, i.e., the set of ideals p C R such that R/p is an integral domain. By convention, the zero
ring is not an integral domain, so the unit ideal is not prime.

For each ideal I of R, define the set

V(I)={p € Spec(R) : I C p}.
The sets V(1) satisfy the usual rules for closed sets in a topological space:
e The empty set is V(R), while the set Spec(R) is V/(0).

e Given any number of sets V(I;), their intersection is V(I) where I is the ideal of R
generated by U; ;.

e Given two sets V(I1),V(I2), their union is V(I3 N Iy). (It is obvious that V(I;) U
V(Iy) € V(I; N 1y). Conversely, if p is an ideal not containing I; or I, we can choose
fi1 € I, fo € Iy not in p, and then fifo € [; N I3 is not in p either.)

The resulting topology is called the Zariski topology on Spec(R).

For any ring homomorphism f : R — S and any p € Spec(S), the induced map
R/f~Y(p) — S/p is injective, and moreover 1 ¢ f~!(p) because f(1) =1 ¢ p. So R/f~(p)
is an integral domain, i.e., f~*(p) is prime, and we have an induced map f* : Spec(S) —
Spec(R). Since f~HV(I)) =V (f~*(I)), f* is continuous.

2 Distinguished open subsets

For f € R, define the distinguished open subset

D(f) = Spec(R) = V((f))

to be the set of all prime ideals not containing f. Every open set is a union of these:

Spec(R) =V (I) = ﬂ D(f).
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Since D(f) N D(g) = D(fg), such open subsets form a basis of the Zariski topology.

What makes this kind of open subset special? Let R; be the localization of R at the
multiplicative set generated by f, which can also be described as R[f~!] = R[T]/(Tf —
1); then the map R — Ry induces a map Spec(Ry) — Spec(R) which in turn induces a
homeomorphism Spec(Ry) = D(f). That is, D(f) is itself naturally thought of as the prime
spectrum of Ry; this perspective will be crucial in leading us to the construction of the
structure sheaf.

3 A look ahead: properties of the structure sheaf

I like to call this the first fundamental theorem of schemes.

Theorem 1 There exists a unique (up to unique isomorphism) sheaf of rings © on Spec(R)
such that there exist isomorphisms

O(D(f)) =Ry (feR)

compatible with restriction: for f,g € R, the diagram

O(Dl(f)) —>C9(Dl(fg))
Rf Rg

commutes.

This description is not itself a definition of a sheaf, as that requires specifying the value of
O(U) for every open set U, not just the distinguished ones. What we are using here to get
away with only referring to distinguished opens is the local nature of sheaves.

4 A key corollary

The following statement is an immediate corollary of the theorem, but we will actually prove
it first and then use it to deduce the theorem.

Corollary 2 Let fi1,...,f, € R be a finite sequence of elements which generate the unit
ideal (equivalently, Spec(R) = D(f;)U---UD(f,)). Then

R = ker (H Ry, — H Rppyy (si)i—= (s — Sj)m‘)

i=1 ij=1

via the diagonal map.



Since the purported isomorphism is a morphism of R-modules, we may check that it is
indeed an isomorphism by doing so locally; that is, it is enough to check that for each prime

ideal p,
R, = ker (H Ry — H Ry (8i)im> (50— 53‘)1’4‘)

i=1 i,j=1 o

(Reminder: for M an R-module and S a multiplicative subset of R, Mg is the set of formal
quotients m/s with s € S modulo the relations m/s = (ms’)/(ss’).) Since localization
preserves kernels, I can move that localization inside the parentheses, to rewrite the claim
as

RP = ker (H(sz)P - H (Rfifj)P7 (52)2 = (Si - Sj)i,j> :
i=1 ij=1
Here (Ry,), can be reinterpreted as (Ry)y,, because both of them equal Rg where S is the
multiplicative subset of R generated by f; and the complement of p. The claim thus becomes

R, = ker (H(R”)ﬁ — H (Rp)gigys (80)i= (80— Sj)i,j) )

i=1 ij=1

Here now is the key point: there exists at least one index ¢ for which p € D(f;), and for
any such index we have

(Rp)fi = va (Rp)fifj = (Rp>fj
because f; becomes a unit in R,. Thus we may project [\, (R,);, onto one factor to obtain

a map from the right side to the left, and this is easily seen to be inverse to the map the
other way.

5 Localization and stalks

Before continuing, let us clarify the relationship between algebraic localization of a ring at a
prime ideal and the formation of stalks of a sheaf. For this purpose, let us temporarily assume
the properties of the structure sheaf. Then the stalk O, is by definition the direct limit of
O(U) as U runs through all open subsets of Spec(R) containing p. Since the distinguished
open sets form a neighborhood basis, this is the same as taking the direct limit of R; as f
runs through all elements of R not contained in p. This is patently equal to the localization
of R at the whole multiplicative set R — p, which by definition is R,.

Thanks to one of the homework problems, this identification implies that the diagonal
map

is injective; that is, we can view elements of R as functions from Spec(R) to the disjoint
union Upespec(r) [ty Without losing any information.



6 Construction of the structure sheaf

We now turn this picture around and use it to establish the existence and uniqueness of the
sheaf O. The uniqueness is already clear now: up to unique isomorphism, we must take
O(U) to be the set of functions s : U — Uyespec(r) Ry such that s(p) € R, for all p € U
which arise locally from ring elements; that is, U can be covered by some distinguished open
subsets D(f) for each of which we can find a ring element r such that sps) = ry (that is,
for p € D(f), s(p) is the image of r; in R,.)

The construction of this presheaf makes it clear that it is actually a sheaf. What is less
obvious is that O(D(f)) = Ry. More precisely, there is a natural map Ry — O(D(f)) which
we want to be an isomorphism.

To see that this map is injective, it will be enough to check directly the claim from the
previous section, that

Ry — [] R
peD(f)

is injective. For ease of notation, we may just do the case f = 1, and then apply it with R
replaced by Ry. Suppose r € R maps to zero in every R,. The set

Amn(r) ={r' € R:rr'" =0}

is an ideal of R, but by hypothesis it cannot be contained in any prime ideal; it is thus the
trivial ideal, so r = 0.

To see that it is surjective, again we need only treat the case f = 1. Let s € O(Spec(R))
be a section. By hypothesis, we can cover Spec(R) with open subsets D(f;) on each of which
can represent s using an element r; € Ry,. By the injectivity argument we just made, the
elements 7;,7; must have the same image in R;;. Moreover, the elements f; generate the
unit ideal, so I can write 1 as a linear combination using only finitely many of them (that
is, Spec(R) is a quasicompact topological space: it is not typically Hausdorff but every open
covering has a finite subcovering). So now I have a finite list of elements fi, ..., f, and a set
of elements r; € Ry, such that r;,r; have the same image in Ry, ; by the earlier corollary,
these come from a single element r € R. This completes the proof of the theorem.



