
Math 203B: Algebraic Geometry
UCSD, winter 2016, Kiran S. Kedlaya

Affine schemes

In this lecture, we start with a ring R and construct from it an affine scheme in a
manner analogous to the construction of an affine variety. Basic commutative algebra will
be assumed; see Atiyah-Macdonald if you need a refresher.

See also: Hartshorne II.1, II.2.

1 The Zariski prime spectrum

We start with the underlying topological space. Let Spec(R) be the set of prime ideals of
R, i.e., the set of ideals p ⊆ R such that R/p is an integral domain. By convention, the zero
ring is not an integral domain, so the unit ideal is not prime.

For each ideal I of R, define the set

V (I) = {p ∈ Spec(R) : I ⊆ p}.

The sets V (I) satisfy the usual rules for closed sets in a topological space:

• The empty set is V (R), while the set Spec(R) is V (0).

• Given any number of sets V (Ij), their intersection is V (I) where I is the ideal of R
generated by ∪jIj.

• Given two sets V (I1), V (I2), their union is V (I1 ∩ I2). (It is obvious that V (I1) ∪
V (I2) ⊆ V (I1 ∩ I2). Conversely, if p is an ideal not containing I1 or I2, we can choose
f1 ∈ I1, f2 ∈ I2 not in p, and then f1f2 ∈ I1 ∩ I2 is not in p either.)

The resulting topology is called the Zariski topology on Spec(R).
For any ring homomorphism f : R → S and any p ∈ Spec(S), the induced map

R/f−1(p) → S/p is injective, and moreover 1 /∈ f−1(p) because f(1) = 1 /∈ p. So R/f−1(p)
is an integral domain, i.e., f−1(p) is prime, and we have an induced map f ∗ : Spec(S) →
Spec(R). Since f−1(V (I)) = V (f−1(I)), f ∗ is continuous.

2 Distinguished open subsets

For f ∈ R, define the distinguished open subset

D(f) = Spec(R)− V ((f))

to be the set of all prime ideals not containing f . Every open set is a union of these:

Spec(R)− V (I) =
⋂
f∈I

D(f).
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Since D(f) ∩D(g) = D(fg), such open subsets form a basis of the Zariski topology.
What makes this kind of open subset special? Let Rf be the localization of R at the

multiplicative set generated by f , which can also be described as R[f−1] = R[T ]/(Tf −
1); then the map R → Rf induces a map Spec(Rf ) → Spec(R) which in turn induces a
homeomorphism Spec(Rf ) ∼= D(f). That is, D(f) is itself naturally thought of as the prime
spectrum of Rf ; this perspective will be crucial in leading us to the construction of the
structure sheaf.

3 A look ahead: properties of the structure sheaf

I like to call this the first fundamental theorem of schemes.

Theorem 1 There exists a unique (up to unique isomorphism) sheaf of rings O on Spec(R)
such that there exist isomorphisms

O(D(f)) ∼= Rf (f ∈ R)

compatible with restriction: for f, g ∈ R, the diagram

O(D(f)) //

��

O(D(fg))

��
Rf

// Rg

commutes.

This description is not itself a definition of a sheaf, as that requires specifying the value of
O(U) for every open set U , not just the distinguished ones. What we are using here to get
away with only referring to distinguished opens is the local nature of sheaves.

4 A key corollary

The following statement is an immediate corollary of the theorem, but we will actually prove
it first and then use it to deduce the theorem.

Corollary 2 Let f1, . . . , fn ∈ R be a finite sequence of elements which generate the unit
ideal (equivalently, Spec(R) = D(f1) ∪ · · · ∪D(fn)). Then

R ∼= ker

(
n∏

i=1

Rfi →
n∏

i,j=1

Rfifj , (si)i 7→ (si − sj)i,j

)

via the diagonal map.

2



Since the purported isomorphism is a morphism of R-modules, we may check that it is
indeed an isomorphism by doing so locally; that is, it is enough to check that for each prime
ideal p,

Rp
∼= ker

(
n∏

i=1

Rfi →
n∏

i,j=1

Rfifj , (si)i 7→ (si − sj)i,j

)
p

.

(Reminder: for M an R-module and S a multiplicative subset of R, MS is the set of formal
quotients m/s with s ∈ S modulo the relations m/s = (ms′)/(ss′).) Since localization
preserves kernels, I can move that localization inside the parentheses, to rewrite the claim
as

Rp
∼= ker

(
n∏

i=1

(Rfi)p →
n∏

i,j=1

(Rfifj)p, (si)i 7→ (si − sj)i,j

)
.

Here (Rfi)p can be reinterpreted as (Rp)fi , because both of them equal RS where S is the
multiplicative subset of R generated by fi and the complement of p. The claim thus becomes

Rp
∼= ker

(
n∏

i=1

(Rp)fi →
n∏

i,j=1

(Rp)fifj , (si)i 7→ (si − sj)i,j

)
.

Here now is the key point: there exists at least one index i for which p ∈ D(fi), and for
any such index we have

(Rp)fi
∼= Rp, (Rp)fifj

∼= (Rp)fj

because fi becomes a unit in Rp. Thus we may project
∏n

i=1(Rp)fi onto one factor to obtain
a map from the right side to the left, and this is easily seen to be inverse to the map the
other way.

5 Localization and stalks

Before continuing, let us clarify the relationship between algebraic localization of a ring at a
prime ideal and the formation of stalks of a sheaf. For this purpose, let us temporarily assume
the properties of the structure sheaf. Then the stalk Op is by definition the direct limit of
O(U) as U runs through all open subsets of Spec(R) containing p. Since the distinguished
open sets form a neighborhood basis, this is the same as taking the direct limit of Rf as f
runs through all elements of R not contained in p. This is patently equal to the localization
of R at the whole multiplicative set R− p, which by definition is Rp.

Thanks to one of the homework problems, this identification implies that the diagonal
map

R→
∏

p∈Spec(R)

Rp

is injective; that is, we can view elements of R as functions from Spec(R) to the disjoint
union tp∈Spec(R)Rp without losing any information.
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6 Construction of the structure sheaf

We now turn this picture around and use it to establish the existence and uniqueness of the
sheaf O. The uniqueness is already clear now: up to unique isomorphism, we must take
O(U) to be the set of functions s : U → tp∈Spec(R)Rp such that s(p) ∈ Rp for all p ∈ U
which arise locally from ring elements; that is, U can be covered by some distinguished open
subsets D(f) for each of which we can find a ring element rf such that sD(f) = rf (that is,
for p ∈ D(f), s(p) is the image of rf in Rp.)

The construction of this presheaf makes it clear that it is actually a sheaf. What is less
obvious is that O(D(f)) = Rf . More precisely, there is a natural map Rf → O(D(f)) which
we want to be an isomorphism.

To see that this map is injective, it will be enough to check directly the claim from the
previous section, that

Rf →
∏

p∈D(f)

Rp

is injective. For ease of notation, we may just do the case f = 1, and then apply it with R
replaced by Rf . Suppose r ∈ R maps to zero in every Rp. The set

Ann(r) = {r′ ∈ R : rr′ = 0}

is an ideal of R, but by hypothesis it cannot be contained in any prime ideal; it is thus the
trivial ideal, so r = 0.

To see that it is surjective, again we need only treat the case f = 1. Let s ∈ O(Spec(R))
be a section. By hypothesis, we can cover Spec(R) with open subsets D(fi) on each of which
can represent s using an element ri ∈ Rfi . By the injectivity argument we just made, the
elements ri, rj must have the same image in Rij. Moreover, the elements fi generate the
unit ideal, so I can write 1 as a linear combination using only finitely many of them (that
is, Spec(R) is a quasicompact topological space: it is not typically Hausdorff but every open
covering has a finite subcovering). So now I have a finite list of elements f1, . . . , fn and a set
of elements ri ∈ Rfi such that ri, rj have the same image in Rfifj ; by the earlier corollary,
these come from a single element r ∈ R. This completes the proof of the theorem.
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