We have already defined an \emph{open immersion} to be a morphism \(f : Y \to X \) which induces an isomorphism of \(Y \) with an open subset of \(X \). This was easy because an open subset of \(X \) inherits a scheme structure directly from \(X \).

But from the context of varieties, we know we would also like to define \emph{closed subschemes} of a given scheme \(X \). This is harder because it is not obvious how to put a scheme structure on a closed set; just taking \(f^{-1} O_Y \) doesn’t work because we don’t get a locally ringed space. Also, it doesn’t match what we want for varieties: we would like for instance to start with the affine plane \(\text{Spec} K[x, y] \), take the locus where \(x = 0 \), and get the affine line \(\text{Spec} K[y] \).

It turns out there is a good reason why this is subtle: in the category of schemes, there are usually many different “closed subspaces” with the same underlying set! For instance, in the example of the affine plane, we can also form \(\text{Spec} K[x, y] / (x^n) \) for any positive integer \(n \), and this has the same underlying set as \(\text{Spec} K[y] \) but is not isomorphic as a scheme.

In fact, we would like to say that a morphism of affine schemes \(\text{Spec} B \to \text{Spec} A \) corresponds to a closed subspace whenever \(A \to B \) is a surjective morphism of rings.

\textbf{Lemma 1.} Let \(f : Y \to X \) be a morphism of schemes. Then the property “\(Y \times_X \text{Spec} A = \text{Spec} B \) for some \(B \) such that \(A \to B \) is surjective” is a local property of open affine subschemes \(\text{Spec} A \) of \(X \).

\textit{Proof.} It is obvious that this property passes from \(\text{Spec} A \) to \(\text{Spec} A_f \). Thus we need only check that if \(X = \text{Spec} A, f_1, \ldots, f_n \in A \) generate the unit ideal, and \(Y \times_X \text{Spec} A_{f_i} = \text{Spec} B_i \) for some ring \(B_i \) such that \(A_{f_i} \to B_i \) is surjective, then \(Y = \text{Spec} B \) for some ring \(B \) such that \(A \to B \) is surjective.

There are various ways to see this, but one elegant way uses what we know about quasicoherent sheaves. Note that the kernel of a map \(\mathcal{F} \to \mathcal{G} \) of quasicoherent sheaves is again quasicoherent: it locally corresponds to the kernel at the level of modules. (Warning: this is again true for cokernels, but it is not obvious because taking quotients of sheaves involves a sheafification step. We’ll discuss this again shortly.)

Let \(I \) be the sheaf \(\ker(\mathcal{O}_X \to f_* \mathcal{O}_Y) \); by the previous discussion, it is quasicoherent, and hence corresponds to an \(A \)-module \(I \) via the third fundamental theorem of schemes. Again, since kernels between modules and quasicoherent sheaves correspond, the map \(I \to A \) is an inclusion, so \(I \) may be viewed as an ideal of \(A \). Put \(B = A/I \); from the isomorphisms \(Y \times_X \text{Spec} A_{f_i} = \text{Spec} B_i \cong \text{Spec} B_{f_i} \), we may assemble an isomorphism \(Y \cong \text{Spec} B \). \(\square \)

We therefore define a \emph{closed immersion} to be any morphism \(f : Y \to X \) of schemes such that for some (hence any) open covering of \(X \) by affine schemes \(\text{Spec} A \), for each \(A \) we have \(Y \times_X \text{Spec} A = \text{Spec} B \) for some ring \(B \) for which \(A \) \(\to B \) is surjective. (The definition in Hartshorne is slightly different and ultimately equivalent; we will reconcile them a bit later.)
Let us again emphasize the fact that while the image of a closed immersion is indeed a closed subset of X, it is not determined by that image. For example, consider the diagram

$$
\text{Spec } K[x, y]/(x) \longrightarrow \text{Spec } K[x, y]/(x^2) \longrightarrow \text{Spec } K[x, y]/(x^3) \longrightarrow \cdots
$$

in which all of the arrows are closed immersions. The first object in the top row corresponds to the “reduced” y-axis, whereas the later objects correspond to various “infinitesimally thicker” copies of the y-axis.