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Derived functors

In preparation for sheaf cohomology, we give a brief overview of the formalism of derived
functors. (Note: to avoid left-right confusion, all functors will be covariant; if you want to
deal with contravariant functors, flip the source or the target appropriately.)

1 Cohomological functors

Let F : C1 → C2 be a left exact covariant functor between two abelian categories (say
modules over certain rings; remember that abelian groups are themselves modules over the
ring Z). A cohomological functor (or δ-functor) associated to F is a collection of functors
F 0, F 1, . . . : C1 → C2 with F 0 = F together with, for every short exact sequence

0→M1 →M2 →M3 → 0,

a family of connecting homomorphisms

δi : F i(M3)→ F i+1(M1)

such that the half-infinite sequence

0→ F 0(M1)→ F 0(M2)→ F 0(M3)
δ0→ F 1(M1)→ F 1(M2)→ F 1(M3)

δ1→ · · ·

is exact. We also want the δi to be functorial for short exact sequences; that is, given a
commutative diagram

0 //M1
//

��

M2
//

��

M3
//

��

0

0 //M ′
1

//M ′
2

//M ′
3

// 0

with exact rows, the diagrams

F i(M3)
δi //

��

F i+1(M1)

��
F i(M ′

3)
δi // F i+1(M ′

1)

should commute.
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2 Example: the snake lemma

Here is the simplest example of this phenomenon. Let R be any ring, and let F : ModR[T ] →
ModR be the functor taking M to ker(×T : M → M). Then we obtain a cohomological
functor by taking F 0 = F ,

F 1(M) = coker(×t : M →M),

and F i(M) = 0 for i ≥ 2. We then need to define, for each short exact sequence

0→M1 →M2 →M3 → 0,

a single connecting homomorphism δ : ker(M3)→ coker(M1) making the sequence

0→ ker(M1)→ ker(M2)→ ker(M3)
δ→ coker(M1)→ coker(M2)→ coker(M3)→ 0

exact. The existence of this map is a consequence of the well-known snake lemma, which
is found in many references. To summarize, the map δ is constructed as follows: given
x ∈ ker(M3), it lifts to some y ∈ M2 which is not necessarily in the kernel. However,
Ty ∈M2 maps to zero in M3 and hence lifts to some z ∈M1, and we want δ(x) to equal the
image of z in coker(M1). This leaves a number of loose ends:

• Why is δ well-defined?

• Why is it a morphism of R-modules?

• Why is the composition ker(M2)→ ker(M3)→ coker(M1) zero?

• Why is the composition ker(M3)→ coker(M1)→ coker(M2) zero?

• Why is the sequence exact at ker(M3)?

• Why is the sequence exact at coker(M1)?

None of these is individually hard to check, but the totality of them is a bit more than I
want to explain here. (Optional exercise: find Dick Gross at UCSD and ask him to tell you
a fun story about the snake lemma!)

3 Universal cohomological functors

Reminder: a morphism F → F ′ of functors from C1 to C2 consists of, for each object X of
C1, a morphism F (X) → F ′(X) in C2, chosen in such a way that whenever X → Y is a
morphism in C1, the diagram

F (X) //

��

F ′(X)

��
F (Y ) // F ′(Y )
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commutes.
A cohomological functor (F i, δi) associated to F is universal if given any morphism

F → F ′ of functors and any cohomological functor (F ′i, δ′i) associated to F ′, there exist a
unique family of morphisms F i → F ′i such that for every short exact sequence

0→M1 →M2 →M3 → 0

the diagram

F i(M3)
δi //

��

F i+1(M1)

��
F ′i(M3)

δ′i // F i+1(M1)

commutes. This being a universal property, when such a thing exists, it is unique up to
unique isomorphism.

4 Example: the snake lemma revisited

Define F : ModR[T ] → ModR and the associated cohomological functor as before. I claim
it is universal: given another cohomological functor (F ′i, δ′i) and a morphism F → F ′, we
get a unique morphism F 1 → F ′1 commuting with δ0.

The way to see this is to observe that given any M ∈ ModR[T ], I can find an injective
morphism M → N in ModR[T ] such that coker(×T : N → N) = 0. For example, take
N to be an infinite product M ×M × · · · with multiplication by T taking (m0,m1, . . . ) to
(Tm0+m1, Tm1+m2, . . . ). Then the map M → N taking m to (m, 0, 0, . . . ) is T -equivariant,
hence a morphism in ModR[T ], and any (m0,m1, . . . ) is the image of (0,m0,m1−Tm0,m2−
Tm1 + T 2m0, . . . ).

Now start with the short exact sequence

0→M → N → N/M → 0

and form the commutative diagram

0 // F (M) //

��

F (N) //

��

F (N/M) δ0 //

��

F 1(M) //

��

F 1(N) = 0

0 // F ′(M) // F ′(N) // F ′(N/M) δ′0 // F
′1(M)

and note that there is a unique way to fill in the dashed arrow. (If you just checked this by
hand, you have engaged in the art of diagram chasing.)

So now we at least know that the maps F 1(M) → F ′1(M) are unique; it is also clear
that this defines a morphism of functors (since the construction of N is itself functorial in
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M). What remains is to check that this definition gives the desired commutativity

F (M3)
δ //

��

F i(M1)

��
F ′(M3)

δ′ // F i(M1)

for any short exact sequence

0→M1 →M2 →M3 → 0

and not just the special ones I used in the definition. You can do this by diagram chasing,
but maybe easier is to stare at the diagram

0 //M1
//M2

//

��

M3
//

��

0

0 //M1
//M2 ⊕N1

//M ′
3

// 0

0 //M1
// N1

//

OO

N1/M1
//

OO

0

with exact rows, where N1 is to M1 as N is to M above. From this diagram, we see that the
diagrams

F (M2) //

��

F (M3)
δ //

��

F 1(M1)

F (M2 ⊕N1) // F (M ′
3)

δ // F 1(M1)

F (N1) //

OO

F (N1/M1)
δ //

OO

F 1(M1)

F ′(M2) //

��

F ′(M3)
δ′ //

��

F ′1(M1)

F ′(M2 ⊕N1) // F ′(M ′
3)

δ′ // F ′1(M1)

F ′(N1) //

OO

F ′(N1/M1)
δ′ //

OO

F ′1(M1)

commute. This implies that the commutativity statement about the δ in the first row
follows from the corresponding statement in the second row, which in turns follows from the
corresponding statement in the third row. (This last step requires a bit of thought: given
x ∈ F (M ′

3), we would be happy if x itself lifted to F (N1/M1), but it may not. However,
by looping around the square, I can find y ∈ F (M ′

3) which does lift to F (N1/M1) for which
δ(x− y) = 0. This x− y lifts to z ∈ F (M2 ⊕N1). Now on one hand, mapping x− y along
F (M ′

3) → F ′(M1) → F ′1(M1) must give zero because we get zero at the first step; on the
other hand, mapping x − y along F (M ′

3) → F ′(M3) → F ′(M1) is the same as mapping z
along F (M2⊕N1)→ F ′(M2⊕N1)→ F ′(M ′

3)→ F ′1(M1) because F → F ′ is a morphism of
functors, and F ′(M2 ⊕N1)→ F ′(M ′

3)→ F ′1(M1) is the zero map.)
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5 Some general results

Theorem 1. If C1 = ModR for some ring R, then every left exact functor admits a universal
cohomological functor associated to it.

Theorem 2. If C1 = Modopp
R for some ring R, then every left exact functor admits a

universal cohomological functor associated to it.

In order to imitate the previous strategy, one should identify, for each M , an exact
sequence

0→M → N → N/M → 0

for which F i(N) = 0 for all i > 0. (In fact, we could get by knowing only that F i(M) →
F i(N) is the zero map for all i > 0, but I digress.) If we could do this, then we would know
that F 1(M) = coker(F (N)→ F (N/M)); we would also know that F i(N/M)→ F i+1(M) is
an isomorphism for i > 0. So if we had another sequence

0→ N/M → N ′ → N ′/(N/M)→ 0

for which F i(N ′) = 0 for all i > 0, then we would get F 2(M) ∼= F 1(N/M) ∼= coker(F (N ′)→
F (N ′/(N/M)). To encapsulate, if F is a cohomological functor and

0→M → N0 → N1 → · · ·

is an exact sequence for which F i(N j) = 0 for all i > 0, then

F 0(M) ∼= ker(F (N0)→ F (N1))

F 1(M) ∼= ker(F (N1)→ F (N2))/ image(F (N0)→ F (N1))

F 2(M) ∼= ker(F (N2)→ F (N3))/ image(F (N1)→ F (N2))

and so on. That is, the groups F i(M) are the cohomology groups of the complex

0→ F (N0)→ F (N1)→ · · · ;

in particular, all of these but the 0-th one vanish if F is exact.
Of course, all of this is a bit circular; we can’t use this as the definition without knowing

what the F i are, in order to check that F i(N j) = 0 for all i > 0. But can we come up with
an a priori set of candidates for the Nj?

In fact we can, because of the following observation: even if F is only left exact, it is
forced to preserve exactness of certain sequences. Namely, suppose

0→M1 →M2 →M3 → 0

is a short exact sequence which is split, that is, there exists a morphism M3 →M2 such that
M3 →M2 →M3 is the identity, or equivalently there exists a morphism M2 →M1 such that
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M1 →M2 →M1 is the identity. Then this additional arrow-theoretic condition is preserved
by F , which forces

0→ F (M1)→ F (M2)→ F (M3)→ 0

to remain exact (namely, if F (M3)→ F (M2)→ F (M3) is the identity, then F (M2)→ F (M3)
must be surjective).

What this suggests is that if N is an object for which every short exact sequence

0→ N → ∗ → ∗ → 0

splits, perhaps we should expect that F i(N) = 0 for all i > 0. (This is a much more ambitious
guess than what we actually know, which is only that the connecting homomorphisms into
F 1(N) all vanish, but bear with me.) This suggests in turn that we try defining the F i to
be the cohomology groups of the complex

0→ F (N0)→ F (N1)→ · · ·

for some exact sequence
0→M → N0 → N1 → · · ·

where each N i has the splitting property.
In the case of Modopp

R , every free module has the splitting property. In fact, we can say
more: if N is free, then for any diagram

0 //M1
//

��

M2

}}
N

in Modopp
R with the first row exact, there exists (but not uniquely) a way to fill in the dashed

arrow. That is, N is an injective object in Modopp
R , a/k/a a projective object in ModR. Since

every module is a quotient of a free module, the category Modopp
R has enough injectives :

every object admits a monomorphism into an injective object.
Meanwhile, ModR also has enough injectives, but this is harder to see because it is harder

to get a hold of explicit injective objects. The case R = Z is a bit easier: an abelian group
is injective if and only if it is divisible.

(Aside: once an abelian category has enough injectives, the injective property for an
object becomes equivalent to the splitting condition.)

To summarize, if the origin category has enough injectives, we define F i to be the coho-
mology groups of the complex

0→ F (N0)→ F (N1)→ · · ·

for some exact sequence
0→M → N0 → N1 → · · ·

where each N i is injective (the existence of said sequence, called an injective resolution, being
guaranteed by the enough injectives condition). This leaves a lot of unanswered questions:
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• Why is this well-defined, i.e., independent of the choice of the resolution?

• Why is this functorial? (It is arguably easier to do this before well-definedness. More
precisely, one checks that given a morphism M → M ′ and fixed resolutions of M and
M ′, one gets functoriality maps that don’t depend on any choices; then well-definedness
comes from taking M = M ′.)

• Where do the connecting homomorphisms come from, and why are they functorial?
(Ultimately, this reduces to the snake lemma.)

• Why is this universal? (Given everything else, this is similar to the example.)

I don’t want to say more than this, because we have reached the point where it is more
profitable for you to read and think about these topics on your own. See Wikipedia for
basics, then follow the links (also try the Stacks Project).
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