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Hilbert polynomials

1 Euler characteristics and Hilbert polynomials

Let K be a field (not necessarily algebraically closed). Let j : X → Pd
K be a closed immersion.

Let F be a coherent (quasicoherent locally finitely generated) sheaf on X. By the previous
results, it makes sense to compute the number

χ(X,F) =
∑
i≥0

(−1)i dimK H
i(X,F);

this is called the Euler characteristic of F on X. Note that this is additive in short exact
sequences: if

0→ F → G → H → 0

is an exact sequence of coherent sheaves, then

χ(X,G) = χ(X,F) + χ(X,H).

Theorem 1. There is a polynomial P (T ) ∈ Q[T ] depending on X and F such that χ(X,F(n)) =
P (n) for all n ∈ Z.

This polynomial is called the Hilbert polynomial of F . In case F = OX , it is also called
the Hilbert polynomial of X itself.

Note that for n sufficiently large, we have χ(X,F(n)) = dimK H
0(X,F(n)) because all

of the other terms vanish. That is, the Hilbert function

n 7→ dimK H
0(X,F(n))

of F agrees with the Hilbert polynomial for n large; the higher cohomology groups in a sense
explain the discrepancy for n small.

(Fun aside: there is an analogous situation in combinatorics involving counting lattice
points in dilates of a polytope, which can be explained by algebraic geometry to the extent
that a certain combinatorial duality property is a consequence of the Serre duality theorem
we will state later. Look up the terms Ehrhart polynomial and then toric varieties on
Wikipedia to get started.)

2 Proof of Theorem 1

There are a variety of ways to prove Theorem 1. In all of them, one makes the usual reduction
to the case X = Pd

K .
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A quick way is to use a famous result of commutative algebra called the Hilbert syzygy
theorem, which states that for any finitely generated module M over a polynomial ring
K[x0, . . . , xd] over a field, there exists a resolution

0→ Fd → · · · → F0 →M → 0

in which F0, . . . , Fd are finite free modules. The point is that one gets to stop after Fd;
for a more general noetherian ring, you can use exclusively finite free modules but you will
typically have to go on forever. Typical example: for R = K[x]/(x2),

×x→ R
×x→ R→ K → 0.

How is this relevant here? We know that we can form an exact sequence

· · · → Fd → · · · → F0 → F → 0

of sheaves in which each Fi has the form O(ni)
⊕mi for some integers mi, ni. For each of

those, we know that the theorem holds because

χ(Pd
K ,O(n)) =

(
n+ d

d

)
=

(n+ 1) · · · (n+ d)

d!
.

If we had only finitely many terms, we would then have

χ(Pd
K ,F) = χ(Pd

K ,F0)− χ(Pd
K ,F1) + · · ·

and be done.
The trick is to notice that thanks to the syzygy theorem, the sheaf image(Fd → Fd−1) is

already finite locally free! This comes down to the algebraic statement: if you have a module
M over a ring admitting a finite free resolution

0→ Fd → · · · → F0 →M → 0

then for any other resolution

· · · → F ′1 → F ′0 →M → 0

the module F ′′d = image(F ′d → F ′d−1) is itself projective. (Argue by induction on d.) In other
words, if M admits one finite free resolution (or equivalently, one finite projective resolution),
then any other projective resolution can be truncated to the same length.

3 Another proof of Theorem 1

That proof is elegant, but (besides requiring proof of Hilbert’s syzygy theorem) doesn’t give
a lot of insight into how the polynomial P (T ) relates to the geometry of X and F . A more
insightful argument can be obtained by the following inductive process.
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Again, assume X = Pd
K . Define the support of F to be the set of x ∈ Pd

K for which Fx 6= 0.
For F a coherent sheaf, this is always a closed subset of Pd

K (the equality Fx = 0 depends
on the vanishing of finitely many local generators, which then immediately propagate to a
neighborhood). For example, if we had started with F = OX for some other X, then j∗OX

has support equal to the image of the closed immersion j : X → Pd
K .

This time, we will argue by induction on dimX. If you prefer, you may as well assume
K is algebraically closed, since base extension on the underlying field won’t change any
dimensions. (Rest to be added later.)

Viewing SuppF as a closed subvariety of X, we may find a hyperplane H which does not
contain any irreducible component of SuppF . (Explicitly, think about the dual projective
space whose K-rational points correspond to these hyperplanes; for each component, the
hyperplanes not containing that component form a nonempty Zariski open subspace. So the
intersection of these is again nonempty.) Form an exact sequence

0→ G → F(−1)→ F → H → 0

where the middle map is multiplication by a defining equation of H. (Note that G 6= 0
because we don’t know that F is flat as a module over O.) At points not in H, the map
F(−1)→ F defines an isomorphism of stalks; consequently, we have

SuppG, SuppH ⊆ H ∩ SuppF .

By the induction hypothesis, we see that

χ(X,F(n))− χ(X,F(n− 1))

is a polynomial in n, as then is χ(X,F) by elementary algebra.
A corollary of this argument is that degP = dim SuppF . If we call this number m, then

m! times the leading coefficient of P is a positive integer, called the degree of F .
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