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Line bundles on curves and the Riemann-Roch theorem

Throughout this lecture, let K be an algebraically closed field and let C be a curve over
K, by which I will mean a smooth irreducible projective variety of dimension 1 over K (or
rather, the associated scheme).

1 A note on local rings

First off, C has a generic point η, and the local ring OC,η equals the function field K(C).
(For instance, if C = P1

K with coordinate x, then K(C) = K(x).)
For each closed point P ∈ C, the local ring OC,P is a one-dimensional noetherian local

ring. Note that the map

mC,P/m
2
C,P
∼= ΩOC,P /K/mC,PΩOC,P /K , t 7→ dt

is an isomorphism of κ(P )-vector spaces; since by smoothness ΩOC,P /K is free of rank one,
it follows that mC,P/m

2
C,P must be a one-dimensional vector space over κ(P ). Consequently,

if we choose an element tp ∈ mC,P − m2
C,P (i.e., a uniformizer of OC,P ), then dtp is a free

generator of ΩOC,P /K . In fact, OC,P must be a discrete valuation ring.

2 Divisors and degrees

A divisor on C is a formal Z-linear combination of closed points. For example, for any
nonzero rational function f ∈ K(C) (where K(C) is the function field of C, a/k/a the local
ring OC,η where η is the generic point of C), we define a divisor (f) =

∑
P ordP (f) · (P )

where ordP f is the order of vanishing of f at P . More precisely, if tP is a uniformizer of
OC,P , then ordP (f) is the integer m such that ft−mP is a unit in OC,P .

This concept extends to line bundles. If L is a line bundle on C, a rational section of L
is an element s ∈ Γ(U,L) for some nonempty open subset U of C. For s a nonzero rational
section, we define a divisor (s) =

∑
P ordP (s) · (P ) where ordP (s) is the unique integer m

for which st−mP is a generator of LP .
The degree of a divisor is the sum of its coefficients. A divisor occurring as (f) for some

f ∈ K(C) is called a principal divisor.

Theorem 1. Every principal divisor has degree 0.

Proof. For C = P1
K this is clear because we can factor any nonzero f ∈ K(C) as a product

of powers of linear polynomials, and the polynomial x − α has divisor (α) − (∞). The
general case reduces to this using the existence of a finite surjective morphism C → P1

K ; see
homework.

As a corollary, we see that for s a nonzero rational section of L, the quantity deg(s)
depends only on L, so we write it as deg(L) and call it the degree of L.
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3 Aside: line bundles from divisors

We just used line bundles to make divisors, but one can also go the other way. Given
a divisor D =

∑
P DP · (P ) on C, we can form a line bundle O(D) whose sections on a

nonempty open subset U of C are the rational functions f ∈ K(C) such that either f = 0 or
ordP (f) +DP ≥ 0 for all P ∈ U . Note that the rational section corresponding to 1 ∈ K(C)
then has divisor precisely D.

4 Statement of Riemann-Roch

Theorem 2 (Riemann-Roch). For every line bundle L on C, there is a canonical perfect
pairing

H0(C,L)×H1(C,Ω⊗ L−1)→ K.

In particular, the two vector spaces have the same dimension.

Note that the case L = OC of this statement is already interesting: it says that there is
a canonical isomorphism

H1(C,Ω) ∼= K.

When K = C, there is a way to prove this using complex analysis: a meromorphic differential
on a Riemann surface has a well-defined residue at each point, and the sum of these over all
points equals 0 (by the Cauchy integral formula). The map H1(C,Ω)→ K is then defined as
follows: if we cover C with two open subsets U1, U2 and then specify an element of H1(C,Ω)
with a form ω ∈ Γ(U1 ∩ U2,Ω), we then map it to the sum of its residues.

To extend this proof to general K, note that (by a previous exercise) one can formally
define the residue of a meromorphic differential form ω at a point P ∈ C by choosing a
uniformizer tP , writing the completion of the local ring OC,P as a power series ring KJtP K,
then expanding ω as a formal series

ω =
∞∑

n=−N

ant
n
PdtP

and taking the residue to be a−1. The key point is then to show that the sum of residues of
a meromorphic differential always equals 0. This again can be reduced to the case C = P1

K

using a finite morphism. In that case, one can write the differential as (f(x)/g(x)) dx with f
and g polynomials; for any fixed degrees of f and g, the vanishing of the sum of differentials
is some formal polynomial identity over Z in the coefficients of f and g. But this identity
must hold over C by the analytic argument from above, so it must in fact be true identically.
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