Math 203B: Algebraic Geometry
UCSD, winter 2016, Kiran S. Kedlaya
Curves of low genus

With the Riemann-Roch theorem in hand, we study some constructions leading to curves
of particular genera. Again, let k£ be an algebraically closed field.

1 Hyperelliptic curves

A hyperelliptic curve is a curve C' admitting a finite morphism f : C' — P of degree 2. For
example, every affine curve of the form y? = P(z) in A7 extends to a hyperelliptic curve,
with z defining the map to P} It will follow from the Riemann-Hurwitz formula (see below)
that if deg P = d, then the genus of C equals (%l — ﬂ; in particular, this proves that the
genus of a curve can take any nonnegative integer value.

For example, if deg P = 1 one obviously gets P} by eliminating z; if deg P = 2 one has
a conic section; if deg P = 3 one gets a smooth cubic curve in P2. For deg P > 3, this affine
curve does not extend smoothly in PZ, so the genus formula for smooth plane curves does

not apply!

2 Riemann-Hurwitz formula

Theorem 1. Let f : C; — Cy be a finite morphism of degree n. (In positive characteristic,
we have to assume that f is separable, i.e., that k(C1)/k(Cs) is not only finite but also
separable as a field extension.) Then

29(Ch) —2=n(29(Cs) —2) +deg R
where R is a divisor associated to (f*Qc,/k)” ® Qe /-

More precisely, we have an exact sequence
0—= Qe = Qoyyp = F =0

where F is a sheaf supported at finitely many points; we may canonically (i.e., not just up
to equivalence) take R to be the ramification divisor, i.e., the divisor consisting of the points
of the support of F, each point P occurring with multiplicity equal to the length of Fp as
a module over O¢ p. (Note: the formula now proves itself!)

For example, if f : Pi — P is the map = + 2z = 2%, P € () is the point z = 0, and
Q € C) is the point z = 0, then Q¢, k¢ is generated by dz, which pulls back to d(2?) = 2zdz.
If k is not of characteristic 2, then this means that R contains P with multiplicity 1; similarly,
the point P’ € C; where x = oo is also contained in R with multiplicity 1. With this, the
arithmetic works out:

29(Ch) —2=—-2=2(-2)+2 =n(29(Cy) — 2) + deg R.
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3 Characteristic zero versus characteristic p

In characteristic zero, it is very easy to compute the divisor R. Namely, if P € C} mapsto
Q € Oy, a uniformizer tg € Og, o pulls back to an element of the form tZu for tp € O¢, p a
uniformizer, m a positive integer, and u € O¢, p a unit. We then have

d
Frldto) = (mtmtudtp + ™= ) dtp.
P dtp
Since m # 0 in k, R has multiplicity m — 1 at P.
Another way to interpret this is that R consists of the “missing preimages”: most points
of C'5 have exactly n distinct preimages in C, but a few fall short, and

deg(R) = ) (n—#f7'(Q)).

QeCy

This can also be used to give a topological proof of Riemann-Hurwitz over C: If U is the
complement in Cy of the image of the support of R, then f~1(U) — U is everywhere n-to-1,
so we have an equality of topological Euler characteristics:

X(f7HU)) = nx(U).

Since Euler characteristics are additive over writing a topological space as a union of an open
subspace and its complement, and a point has Euler characteristic 1, this yields the proof.
(Another way to interpret this is as a proof that the genus in Riemann-Roch coincides with
the topological genus: we know this for P&, and this derivation implies that both genera
transform the same way under finite morphisms.)

This still works in characteristic p if none of the integers m is divisible by p; in this
case we say f is tamely ramified (e.g., the squaring map example when p # 2). If this fails
(and f is separable), we say f is wildly ramified; these often arise from Artin-Schreier field
extensions (see homework).

4 Linear systems

If £ is a line bundle on C' and V is a subspace of H°(C, L) of dimension n, we've seen in
a previous homework that we can attempt to define a map C' — IP’Z_l using the sections
of V; this works provided that the divisors of the nonzero elements of V' have no common
point. (Classical terminology: the projectivization of V', or the corresponding collections of
divisors, is called a linear system on C. A common point in the divisors is called a base point
or basepoint. If there are no base points, we say V' is basepoint-free.)

So let’s try this using the canonical sheaf {2, taking V' to be the whole space of sections
(which has dimension g). If g = 0, then V' = 0 and this completely fails. If g = 1, then V is
a one-dimensional space; it is basepoint-free since any section has degree 2g — 2 = 0, but we
just get a map to a point.



This gets more interesting once g gets up to 2. In this case, V' is a two-dimensional space,
so we potentially are getting a map C' — P4, at least provided that there is no basepoint.
(In fact, the canonical linear system is always basepoint-free for g > 2; see homework.) The
degree of this map can be interpreted as the degree of any nonzero divisor in the linear
system, which in this case is 29 — 2 = 2. So in fact, the one construction we know of curves
of genus 2, namely as hyperelliptic curves, is in fact the only way that they can occur!



