With the Riemann-Roch theorem in hand, we study some constructions leading to curves of particular genera. Again, let k be an algebraically closed field.

1 Hyperelliptic curves

A **hyperelliptic curve** is a curve C admitting a finite morphism $f : C \to \mathbb{P}^1_k$ of degree 2. For example, every affine curve of the form $y^2 = P(x)$ in \mathbb{A}^2_k extends to a hyperelliptic curve, with x defining the map to \mathbb{P}^1_k. It will follow from the Riemann-Hurwitz formula (see below) that if $\text{deg} P = d$, then the genus of C equals $\lceil \frac{d^2}{2} - 1 \rceil$; in particular, this proves that the genus of a curve can take any nonnegative integer value.

For example, if $\text{deg} P = 1$ one obviously gets \mathbb{P}^1_k by eliminating x; if $\text{deg} P = 2$ one has a conic section; if $\text{deg} P = 3$ one gets a smooth cubic curve in \mathbb{P}^2_k. For $\text{deg} P > 3$, this affine curve does not extend smoothly in \mathbb{P}^2_k, so the genus formula for smooth plane curves does not apply!

2 Riemann-Hurwitz formula

Theorem 1. Let $f : C_1 \to C_2$ be a finite morphism of degree n. (In positive characteristic, we have to assume that f is separable, i.e., that $k(C_1)/k(C_2)$ is not only finite but also separable as a field extension.) Then

$$2g(C_1) - 2 = n(2g(C_2) - 2) + \deg R$$

where R is a divisor associated to $(f^*\Omega_{C_2/k})^\vee \otimes \Omega_{C_1/k}$.

More precisely, we have an exact sequence

$$0 \to f^*\Omega_{C_2/k} \to \Omega_{C_1/k} \to \mathcal{F} \to 0$$

where \mathcal{F} is a sheaf supported at finitely many points; we may canonically (i.e., not just up to equivalence) take R to be the *ramification divisor*, i.e., the divisor consisting of the points of the support of \mathcal{F}, each point P occurring with multiplicity equal to the length of \mathcal{F}_P as a module over $\mathcal{O}_{C,P}$. (Note: the formula now proves itself!)

For example, if $f : \mathbb{P}^1_k \to \mathbb{P}^1_k$ is the map $x \mapsto z = x^2$, $P \in C_1$ is the point $x = 0$, and $Q \in C_1$ is the point $z = 0$, then $\Omega_{C_1/k,Q}$ is generated by dz, which pulls back to $d(x^2) = 2xdx$. If k is not of characteristic 2, then this means that R contains P with multiplicity 1; similarly, the point $P' \in C_1$ where $x = \infty$ is also contained in R with multiplicity 1. With this, the arithmetic works out:

$$2g(C_1) - 2 = -2 = 2(-2) + 2 = n(2g(C_2) - 2) + \deg R.$$
3 Characteristic zero versus characteristic \(p \)

In characteristic zero, it is very easy to compute the divisor \(R \). Namely, if \(P \in C_1 \) mapsto \(Q \in C_2 \), a uniformizer \(t_Q \in \mathcal{O}_{C_2,Q} \) pulls back to an element of the form \(t_P^m u \) for \(t_P \in \mathcal{O}_{C_1,P} \) a uniformizer, \(m \) a positive integer, and \(u \in \mathcal{O}_{C_1,P} \) a unit. We then have

\[
f^*(dt_Q) = \left(mt_P^{m-1}udt_P + t_P^m \frac{du}{dt_P} \right) dt_P.
\]

Since \(m \neq 0 \) in \(k \), \(R \) has multiplicity \(m - 1 \) at \(P \).

Another way to interpret this is that \(R \) consists of the “missing preimages”: most points of \(C_2 \) have exactly \(n \) distinct preimages in \(C_1 \), but a few fall short, and

\[
\deg(R) = \sum_{Q \in C_2} (n - \#f^{-1}(Q)).
\]

This can also be used to give a topological proof of Riemann-Hurwitz over \(\mathbb{C} \): If \(U \) is the complement in \(C_2 \) of the image of the support of \(R \), then \(f^{-1}(U) \to U \) is everywhere \(n \)-to-1, so we have an equality of topological Euler characteristics:

\[
\chi(f^{-1}(U)) = n\chi(U).
\]

Since Euler characteristics are additive over writing a topological space as a union of an open subspace and its complement, and a point has Euler characteristic 1, this yields the proof. (Another way to interpret this is as a proof that the genus in Riemann-Roch coincides with the topological genus: we know this for \(\mathbb{P}^1 \mathbb{C} \), and this derivation implies that both genera transform the same way under finite morphisms.)

This still works in characteristic \(p \) if none of the integers \(m \) is divisible by \(p \); in this case we say \(f \) is tamely ramified (e.g., the squaring map example when \(p \neq 2 \)). If this fails (and \(f \) is separable), we say \(f \) is wildly ramified; these often arise from Artin-Schreier field extensions (see homework).

4 Linear systems

If \(\mathcal{L} \) is a line bundle on \(C \) and \(V \) is a subspace of \(H^0(C, \mathcal{L}) \) of dimension \(n \), we’ve seen in a previous homework that we can attempt to define a map \(C \to \mathbb{P}^{n-1}_k \) using the sections of \(V \); this works provided that the divisors of the nonzero elements of \(V \) have no common point. (Classical terminology: the projectivization of \(V \), or the corresponding collections of divisors, is called a linear system on \(C \). A common point in the divisors is called a base point or basepoint. If there are no base points, we say \(V \) is basepoint-free.)

So let’s try this using the canonical sheaf \(\Omega \), taking \(V \) to be the whole space of sections (which has dimension \(g \)). If \(g = 0 \), then \(V = 0 \) and this completely fails. If \(g = 1 \), then \(V \) is a one-dimensional space; it is basepoint-free since any section has degree \(2g - 2 = 0 \), but we just get a map to a point.
This gets more interesting once \(g \) gets up to 2. In this case, \(V \) is a two-dimensional space, so we potentially are getting a map \(C \to \mathbb{P}^1_k \), at least provided that there is no basepoint. (In fact, the canonical linear system is always basepoint-free for \(g \geq 2 \); see homework.) The degree of this map can be interpreted as the degree of any nonzero divisor in the linear system, which in this case is \(2g - 2 = 2 \). So in fact, the one construction we know of curves of genus 2, namely as hyperelliptic curves, is in fact the only way that they can occur!