Math 203B (Algebraic Geometry), UCSD, winter 2016
Problem Set 1 (due Wednesday, January 13)

Solve the following problems, and turn in the solutions to four of them. Advance warning:
some problems in later sets will refer to earlier problems, so if you don’t succeed in solving
some problems, make sure to read the posted solutions!

General note: you are welcome to look things up as you try to solve the exercises, as
long as you cite your sources. Typical sources: Gathmann’s notes, Hartshorne, Atiyah-
Macdonald, Stacks Project, Wikipedia, PlanetMath, MathOverflow. (Google is typically
not a source; cite the originating website.) Likewise, you are welcome to collaborate with
other students in the course, as long as you cite these collaborations. (When appropriate,
break this down by individual problem.)

If you plan to submit typed solutions, I encourage you to submit them through Sage-
MathCloud. To do this, create a free account at http://cloud.sagemath.com/ and email
me with your username; you will then see a course in your account with upload folders for
individual assignments.

Throughout this problem set, you may use without comment the fact that for R any ring,
the global sections of the structure sheaf on Spec(R) equal R (whether or not I get to this
in class before Wednesday).

1. (a) Take X = C and let F be the sheaf of holomorphic functions. Is the Taylor series
map from the stalk Fy to the power series ring C[z] injective? Why or why not?

(b) Take X = R and let F be the sheaf of C*° functions. Is the Taylor series map
from the stalk Fy to the power series ring R[z] injective? Why or why not?

2. Let F be a sheaf of sets on a topological space X. Prove that for every open set U,
the map
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is injective; also give an example of a presheaf for which this fails.
3. Read about adjoint functors on Wikipedia, then describe:

(a) a left adjoint to the forgetful functor Ab — Set;
(b) a left adjoint to the forgetful functor Ring — Set.

These examples illustrate the common role of adjoint functors as “promotion” and
“restriction” operations between categories.

4. Compute the cardinality of each fiber of the map SpecZ[i] — Spec Z, using (without
proof) standard facts from elementary number theory.

5. Describe the closed points of the topological space Spec R[z].



6. Let U be the subspace of X = Spec Z[z]| obtained by removing the closed point (2, ).
Compute the sections of the structure sheaf of X on U, and use the result to see that
U is not affine. (Hint: just like for the affine plane minus a point, you can cover U
with two open affine subspaces whose intersection is again open affine.)

7. Let R be a ring. Let S be the “collection” of ring homomorphisms R — F where
F' is a field. Declare two such homomorphisms R — F}, R — F5 to be equivalent
if there exist field homomorphisms F; — F3, F5 — F3 such that the compositions
R — F} — F3, R — Fy, — Fj3 coincide. Prove that the quotient of S by this equivalence
relation bijects to a set, and identify this set explicitly.



