
Math 203B (Algebraic Geometry), UCSD, winter 2016
Solutions for problem set 2

1. (a) Let B be the subcategory of X consisting of the open sets in B (so again morphisms
are inclusions). Then the category of sheaves (say of sets) on X is equivalent to
the category of contravariant functors F : B → Set such that for any U ∈ B
and any covering of U by subsets Ui ∈ B (indexed by any set I), F (U) maps
bijectively to the set of (si) ∈

∏
i∈I F (Ui) such that for all i, j ∈ i, si and sj have

the same image in F (Ui ∩ Uj).

(b) For F a sheaf specified on B and x ∈ X, we define the stalk Fx again as the
direct limit of F(U) as U runs over elements of B containing x. Let F ′ be the
sheaf such that F ′(U) consists of the maps s : U → tx∈XFx such that s(x) ∈ Fx

for all x ∈ U , and for some covering {Ui} of U by elements of B, s|Ui
is induced

by an element of F (Ui). Then the map Fx → F ′x is an isomorphism for each x,
because elements of B containing x are cofinal among all open neighborhoods,
so the direct limit can be computed just using them. It follows that the functor
F 7→ F ′ provides a quasi-inverse to the restriction functor from sheaves to sheaves
specified on B.

2. Cover the Riemann sphere S with the two open subsets U1 = S−{0} and U2 = S−{∞}.
Put V1 = SpecC[z] and V2 = SpecC[z−1]; using a theorem from lecture, the maps
C[z]→ O(U1), C[z]→ O(U2) define morphisms U1 → V1, U2 → V2 which overlap in a
morphism U1 ∩ U2 → V1 ∩ V2. They thus define a morphism S → P1

C of locally ringed
spaces which by the Nullstellensatz is a bijection (but not a homeomorphism) of S
with the closed points of P1

C.

3. (a) The map Ai → Ai[f
−1
j ] defines a map Spec(Ai[f

−1
j ]) → Spec(Ai) = Xi. The

image of this map contains only primes not containing fj, so lies in Xi ∩Xj. The
map Spec(Ai[f

−1
j ])→ Xi ∩Xj is a homeomorphism: its inverse is the continuous

map p 7→ p[f−1j ].

(b) To simplify notation, we only check that Af1 → A1 is an isomorphism. As directed,
we start with the exact sequence

0→ A→
n∏

i=1

Ai →
n∏

i,j=1

Aij

for Aij = OX(Xi∩Xj). Inverting f1 preserves exactness, so we have another exact
sequence

0→ Af1 →
n∏

i=1

Ai,f1 →
n∏

i,j=1

Aij,f1 .

Using (a), we may rewrite this as

0→ Af1 →
n∏

i=1

OX(X1 ∩Xi)→
n∏

i,j=1

OX(X1 ∩Xi ∩Xj)
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from which it follows that Af1
∼= OX(X1) = A1.

(c) Using (b), we get a ring map A → Afi
∼= Ai and hence a morphism Xi

∼=
Spec(Afi) → Spec(A) of schemes. These maps agree on overlaps, so they define
a morphism X → Spec(A) of schemes. To see that this is an isomorphism, it
suffices to check locally on A. But f1, . . . , fn generate the unit ideal in A, so
the distinguished opens D(fi) form a cover, and the restriction to D(fi) is the
isomorphism Xi

∼= Spec(Ai).

4. The last map in the sequence

0→M →
n∏

i=1

Mfi →
n∏

i,j=1

Mfifj

was defined to take (si)
n
i=1 to (si − sj)

n
i,j=1 (where the restriction maps have been left

implicit). The last map in the extended sequence

0→M →
n∏

i=1

Mfi →
n∏

i,j=1

Mfifj →
n∏

i,j,k=1

Mfifjfk

can be taken to send (sij)
n
i,j=1 to (sij−sik+sjk)ni,j,k=1. Similarly, to extend the sequence,

one maps

(si1···ik)ni1,...,ik=1 to

(
k∑

j=0

(−1)jsi0···îj ···ik

)n

i0,...,ik=1

,

where the hat means omit that index.

To see that this sequence is indeed exact, as usual we localize at an arbitrary prime
ideal, which effectively means we may assume that f1 = 1. Let Ck be the k-th term
in the sequence, indexing so that C0 = M . Let dk : Ck → Ck+1 be the map in the
sequence, so that dk+1 ◦ dk = 0. Let hk : Ck+1 → Ck be the map taking

(si0···ik)ni0,...,ik=1 to (s1i1···ik)ni1,...,ik=1,

using the identification Mf1fi1 ···fik
∼= Mfi1 ···fik . Then hk ◦ dk + dk−1 ◦ hk−1 = idCk

(this
is an example of a chain homotopy). Now if x ∈ Ck satisfies dk(x) = 0, then

x = idCk
(x) = (hk ◦ dk + dk−1 ◦ hk−1)(x) = dk−1(hk−1(x)),

so x is in the image of Ck−1; this proves exactness.

This can be done purely in the language of commutative algebra, but we indicate the
following proof in order to illustrate ideas from the lectures so far. Suppose first that
X = Spec(R) can be written as the disjoint union of two nonempty open subsets U1, U2.
Then there is a section e1 ∈ OX(X) which restricts to 1 on U1 and 0 on U2, and a
section e2 ∈ OX(X) which restricts to 1 on U2 and 0 on U1. We proved in class that the
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natural map R → OX(X) is an isomorphism. To check that e1, e2 satisfy e1 + e2 = 1,
e21 = e1, e

2
2 = e2, it is enough to check this at the level of sections, which we may do

on U1 and U2 separately.

Suppose next that e1, e2 are nonzero idempotents which add up to 1. Then V (e1), V (e2)
are closed subsets of X; they are disjoint because e1 and e2 generate the unit ideal,
and they cover X because e1e2 = e1(1− e1) = e1− e21 = 0. Finally, V (e1) is nonempty:
otherwise, e1 would have to generate the unit ideal, so we could find f ∈ R with
e1f = 1; but then e1 = e21f = e1f = 1 and so e2 = 1 − e1 = 0, a contradiction.
Similarly, V (e2) is nonempty, so they form a partition of X into two nonempty closed
sets.

5. (a) Let R be a discrete valuation ring with fraction field K. Then Spec(R) = {0, p}
for p the maximal ideal of R; the unique closed point is p, so {0} is an open subset
containing no closed points.

(b) Let R be a finitely generated algebra over a field K. To prove that the closed points
of Spec(R) are dense, it suffices to check that for every f ∈ R, if the distinguished
open subset D(f) is nonempty, then D(f) contains a maximal ideal. Suppose to
the contrary that every maximal ideal of R contains f . Let I be the nilradical of
R. By the Nullstellensatz as in Stacks Project, Tag 00FV, every radical ideal of
R is the intersection of the maximal ideals containing it. Applying this to I, we
see that f ∈ I, so f is nilpotent; consequently, D(f) is empty.

(a) Cover P1
Z by the open sets U1 = SpecZ[t], U2 = SpecZ[t−1]. Then for any

morphism f : Spec(Z) → P1
Z, we have f−1(U1) = V1, f

−1(U2) = V2 for some
covering of Spec(Z) by two open subsets V1, V2. Recall that each open subset
of Spec(Z) is either empty or the complement of finitely many maximal ideals;
in particular, it is necessarily affine. We thus have V1 = SpecZ[1/N1], V2 =
SpecZ[1/N2] for some nonnegative integers N1, N2 which are coprime.

Suppose for the moment that N1, N2 > 0. The maps V1 → U1, V2 → U2 correspond
to ring maps Z[t] → Z[1/N1], Z[t−1] → Z[1/N2] which induce the same map
Z[t, t−1] → Z[1/(N1N2)]. That is, t and t−1 map to elements of Q which are
reciprocals of each other with respective denominators dividing N1, N2. Since
N1, N2 could in principle be arbitrary, we can in fact realize any nonzero rational
number as the image of t.

The excluded case N1 = 0 corresponds to the map Z[t−1] → Z taking t−1 to 0,
and vice versa. We conclude that the set of maps is in fact Q ∪ {∞}; in other
words, it is the same as the set of maps Spec(Q)→ P1

Q!
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