1. (a) Give a precise mathematical formulation of the following informal statement: for
 \(X \) a topological space and \(\mathcal{B} \) a basis of open subsets of \(X \), the category of sheaves
 on \(X \) is equivalent to the category of “sheaves specified on \(\mathcal{B} \)”.

 (b) Prove the statement you made in (a).

2. Exhibit a morphism in the category of locally ringed spaces from the Riemann sphere,
 equipped with the sheaf of holomorphic functions, to the scheme \(\mathbb{P}^1_{\mathbb{C}} \)
 which is surjective on closed points. (Optional: show also that this morphism factors through
 the variety-theoretic \(\mathbb{P}^1_{\mathbb{C}} \).

3. Let \(X \) be a scheme and put \(A = \mathcal{O}_X(X) \). Let \(f_1, \ldots, f_n \in A \) be elements which
 generate the unit ideal. For \(i = 1, \ldots, n \), let \(X_i \) be the open subscheme of \(X \) consisting of
 those points \(x \) for which \(f_i \) does not belong to the maximal ideal of the local ring \(\mathcal{O}_{X,x} \).
 Suppose that \(X_i \) is affine for \(i = 1, \ldots, n \), and put \(A_i = \mathcal{O}_X(X_i) \).

 (a) For \(i, j = 1, \ldots, n \), prove that the open subscheme \(X_i \cap X_j \) of \(X \) is isomorphic to
 \(\text{Spec}(A_i[f_j^{-1}]) \).

 (b) Prove that the natural map \(A_{f_i} \to A_i \) is an isomorphism. Hint: start with an
 exact sequence
 \[
 0 \to A \to \bigoplus_{i=1}^n A_i \to \bigoplus_{i,j=1}^n A_{ij}
 \]
 for \(A_{ij} = \mathcal{O}_X(X_i \cap X_j) \), then invert \(f_i \).

 (c) Prove that \(X \) is isomorphic to \(\text{Spec}(A) \).

4. Here’s a fact we’ll use soon in the construction of sheaf cohomology. Let \(M \) be a
 module over a ring \(R \). Let \(f_1, \ldots, f_n \) be elements of \(R \) which generate the unit ideal.
 We showed in lecture for \(M = R \) (but the general case is similar) that there is an exact sequence
 \[
 0 \to M \to \bigoplus_{i=1}^n M_{f_i} \to \bigoplus_{i,j=1}^n M_{f_if_j}.
 \]
 Show that this extends to an exact sequence
 \[
 0 \to M \to \bigoplus_{i=1}^n M_{f_i} \to \bigoplus_{i,j=1}^n M_{f_if_j} \to \bigoplus_{i,j,k=1}^n M_{f_if_jf_k} \to \cdots,
 \]

1
where the definition of the additional terms and maps is left for you to figure out. (It might help to try the case \(n = 3 \) first, then look for the general pattern.)

5. Let \(R \) be a nonzero ring. Prove that the following conditions are equivalent.

 (a) The space \(\text{Spec}(R) \) is disconnected: that is, it is the disjoint union of two open-closed proper subsets.

 (b) There exist nonzero elements \(e_1, e_2 \) of \(R \) with \(e_1 + e_2 = 1 \) which are idempotent, i.e., \(e_1^2 = e_1, e_2^2 = e_2 \).

 Hint: use the fact that \(R \) is isomorphic to the ring of global sections of the structure sheaf.

6. (a) Give an example of a scheme whose closed points are not dense. The Internet can help!

 (b) Show that if \(X = \text{Spec}(R) \) where \(R \) is a finitely generated algebra over a field, then the closed points of \(X \) are dense for the Zariski topology.

7. Let \(S \) be the set of morphisms \(\text{Spec}(\mathbb{Z}) \to \mathbb{P}^1_\mathbb{Z} \). Describe \(S \), and show that in particular \(S \neq \mathbb{Z} \cup \{\infty\} \).