
Math 203B (Algebraic Geometry), UCSD, winter 2016
Solutions for problem set 3

1. (a) Since f is a unit in Rf , any prime ideal of Rf contracts to a prime ideal of R
not containing f . Conversely, if p ∈ SpecR does not contain f , then pRf is
again prime (if (m1/f

n1)(m2/f
n2) ∈ pRf , then m1m2f

? ∈ p, so m1m2 ∈ p) and
contracts to p (similar argument); hence the map SpecRf → SpecR has image
equal to D(f). The map SpecRf → D(f), which we’ve just shown is surjective,
is also injective: if p ∈ D(f) is the contraction of q ∈ SpecRf , then pRf ⊆ q and
q ⊆ pRf (both easily). Moreover, the continuous bijection SpecRf → D(f) is
continuous: the open subset D(m/f ?) of SpecRf coincides with D(mf) ⊆ D(f).

(b) By definition, D+(f) is the subset of SpecS consisting of homogeneous relevant
prime ideals not containing f , equipped with the subspace topology. The map
SpecSf,0 → D+(f) takes p ∈ SpecSf,0 to the ideal q =

⊕∞
n=0 qn in which qn

consists of those x ∈ Sn such that xdf−n ∈ p. The inverse map takes q =
⊕∞

n=0 qn
to the ideal

∑∞
n=0 f

−nqdn of Sf,0. This map is bicontinuous: a basis of the topology
on D+(f) is given by sets of the form D+(fg) where g is homogeneous of some
degree e > 0, and these are identified with the sets D(gd/f e) ⊆ SpecSf,0 which
again form a basis of the topology.

2. The sections of the structure sheaf on D+(xi) ⊆ Pd
R equal the ring R[x0/xi, . . . , xd/xi],

where the factor xi/xi is omitted. The global sections are the collections of local
sections which agree on overlaps. To compute these, note that the sections on any
intersection of the D+(xi) inject into the ring D+(x0 · · ·xd), which consists of all formal
sums

∑
ce0,...,edx

e0
0 · · ·x

ed
d with ce0,...,ed ∈ R and the sum running over all (d + 1)-tuples

(e0, . . . , ed) of integers summing to 0. The subring corresponding to D+(xi) consists
of the sums running over all tuples in which ej ≥ 0 for all j 6= i. The global sections
are given by the intersection of these subring, which consists of sums running over all
tuples for which ei ≥ 0 for all i. Since e0 + · · ·+ ed = 0, this only happens for the zero
tuple, i.e., we just get the ring R. Since Pd

R → SpecR is not an isomorphism (e.g.,
because it is not injective on underlying sets), Pd

R cannot be affine.

3. (a) It is obvious that if SpecR is reduced, then R is reduced. Conversely, if R is
reduced, then Rp is reduced for each p ∈ R: if (r1/s1)

n = 0 in Rp, then rn1 is
killed by some s2 ∈ R − p, so (r1s)

n = 0, so r1s = 0 because R is reduced, so
r1/s1 = 0 in Rp. For each open subset U of X, OX(U) is a subring of the reduced
ring

∏
p∈R Rp and hence is also reduced.

(b) This is similar to (a). On one hand, if X is reduced, then OX,x is a direct limit
of reduced rings and is hence reduced. Conversely, if OX,x is reduced for each
x ∈ X, then for each open subset U of X, OX(U) is a subring of the reduced ring∏

x∈U OX,x and hence is also reduced.

(c) For R a ring, the nilpotent elements of R form an ideal (if xn1
1 = xn2

2 = 0, then
(x1 + x2)

n1+n2−1 = 0) called the nilradical of R; let Rred be the quotient of R by
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the nilradical. Note that SpecRred → SpecR is a closed immersion which is also
surjective on underlying topological spaces (because every prime ideal contains
the nilradical), hence a homeomorphism (using the following problem). Also,
the functor R 7→ Rred from rings to reduced rings is left adjoint to the forgetful
functor.

For (X,OX) a scheme, put Xred = (X,OX,red), where OX,red(U) with the set of
functions s : U → tx∈XOX,x,red with s(x) ∈ OX,x,red for all x ∈ U which are
locally represented by sections of O(X). It will suffice (both to check that Xred

is a scheme and to get the adjoint property) to show that if X = SpecR is affine,
then Xred = SpecRred; this reduces to showing that OX,red(D(f)) = Rred,f . This is
true because for p ∈ SpecR, OX,p,red = (Rp)red = (Rred)p. (By a similar argument,
one sees that for every open subset U of X, we have OX,red(U) = OX(U)red.)

4. The map SpecB → SpecA identifies SpecB with the set of p ∈ SpecA containing
I = ker(A → B). Under this identification, the open subset D(f) of SpecB equals
D(f) ∩ SpecB for any f ∈ A lifting f ∈ B. Hence SpecB is homeomorphic to the
closed subset V (I) of A. The morphism f ] : OX → f∗OY is surjective on stalks: if
p /∈ SpecB the target is the zero map, and otherwise it is the map Ap → BpB which is
again surjective.

5. In both cases, it suffices to match up a basis of open subsets. By definition (plus
an earlier exercise), ProjS admits a basis of open subschemes D+(f) ∼= SpecSf,0

for f varying over homogeneous elements of positive degree. The key point is that
D+(f) = D+(fm), so we need only consider f of degree divisible by m; for such f , the
graded rings S, S ′ = S0 ⊕

⊕∞
n=m Sn, and S ′′ =

⊕∞
n=0 Smn satisfy Sf,0 = S ′f,0 = S ′′f,0

(because they are defined using the same elements).

6. The classical Veronese embedding is defined in terms of homogeneous coordinates by
the formula

[x : y : z] 7→ [x2 : xy : xz : y2 : yz : z2].

This corresponds to a morphism

R[x0, . . . , x5]→ R[x, y, z]

of graded if we put each of x0, . . . , x5 in degree 2 rather than degree 1: we may then
send x0, . . . , x5 to x2, xy, xz, y2, yz, z2, respectively.
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