
Math 203B (Algebraic Geometry), UCSD, winter 2016
Solutions for problem set 4

1. In one direction, if F(SpecR) = M is a finitely generatedR-module, then F(SpecRf ) =
Mf is a finitely generated R-module. In the other direction, suppose that f1, . . . , fn ∈ R
generate the unit ideal andMf1 , . . . ,Mfn are finitely generated modules overRf1 , . . . , Rfn ,
respectively. We may then choose finite subsets S1, . . . , Sn of M such that Si generates
Mfi over Rfi (namely, choose a finite set of generators of Mfi and then clear denomi-
nators). Put S = S1 ∪ · · · ∪ Sn, let F be a free R-module indexed by the elements of
S, and let F → M be the induced morphism. Then for each p ∈ SpecR, there exists
i ∈ {1, . . . , n} such that p ∈ D(fi); then Mp = (Mfi)p and Ffi → Mfi is surjective, so
Fp → Mp is surjective. Since this is true for all p, it follows that F → M is surjec-
tive, so M is finitely generated. This implies that “F(SpecR) is a finitely generated
R-module” is a local property, so the affine communication lemma implies that if the
property holds for a single covering of X by open affines, then it holds for every open
affine subscheme of X.

2. The property of upper semicontinuity may be checked locally on X, so we may assume
at once that X = Spec(R) is affine, so that F ∼= M̃ for M = F(X). The upper
semicontinuity property states that for any x ∈ X, if dimκ(x)Fx/mxFx = n, then there
exists an open neighborhood U of x in X such that dimκ(y)Fy/myFy ≤ n for all y ∈ U .
To check this, choose any elements m1, . . . ,mn ∈ Fx which form a basis of Fx/mxFx
over κ(x). By Nakayama’s lemma, m1, . . . ,mn generate Fx as a module over OX,x.
Now choose some generators m′1, . . . ,m

′
k of M as an R-module. In Fx, we can write

m′i =
∑

j fijmj for some fij ∈ OX,x. Now find an open neighborhood U of x in X such
that the mi, the fij, and the equality m′i =

∑
j fijmj all lift to U . Then m1, . . . ,mn

generate F(U), so they also generate Fy for all y ∈ U . Therefore dimκ(y)Fy/myFy ≤ n
for all y ∈ U , as desired.

3. (a) An R-module M is locally free if there exist f1, . . . , fn ∈ R generating the unit
ideal such that Mfi is a free module over Rfi . If M is a locally finite free R-module,
then clearly Mf is a locally finite free Rf -module (using the same f1, . . . , fn).
Conversely, suppose that there exist f1, . . . , fn ∈ R generating the unit ideal such
that Mfi is a locally finite free module over Rfi . By an earlier exercise, M is then
finitely generated, so it suffices to check that it is locally free. By hypothesis, for
each i, there exist gi1, . . . , gim ∈ Rfi generating the unit ideal such that (Mfi)gij is
a free module over (Rfi)gij . By clearing denominators, we may force gij ∈ R; we
may then identify (Rfi)gij with Rfigij and (Mfi)gij with Mfigij . For each fixed i,
the sets D(figij) cover D(fi); consequently, as both i and j vary, the sets D(figij)
cover SpecR. Hence M is locally free.

(b) The original problem statement was missing some conditions on the vector bundle:
it must come with a map Y ×X Y → Y corresponding to addition on each An

Ui
,

and with a map A1
X ×X Y → Y corresponding to scalar multiplication on each

An
Ui

.
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4. It suffices to check that for M a finitely generated module over a reduced ring R such
that dimκ(p)M⊗Rκ(p) = n for all p ∈ SpecR, every p ∈ SpecR admits a distinguished
open neighborhood D(f) such that Mf is free of rank n over Rf . Let m1, . . . ,mn ∈M
be elements which are linearly independent in M ⊗R κ(p); they then form a basis.
By Nakayama’s lemma, they also generate Mp. Now choose some other finite set
s1, . . . , sk of elements of M which generate M , and choose elements Aij ∈ R such that
mj =

∑
iAijsi. The fact that m1, . . . ,mn are linearly independent in Mp means that

some maximal minor of the matrix A is invertible in Rp; taking f to be this value, we
see that for each q ∈ D(f), m1, . . . ,mn are linearly independent in M ⊗R κ(q) and
hence (by Nakayama again) generate Mq. It follows that the map from the free module
Rn
f to Mf defined by m1, . . . ,mn is surjective. To check that it is injective, choose the

coefficients of a relation among m1, . . . ,mn; these project to zero in every prime ideal
of Rf , and hence are zero because R is reduced.

5. (a) In one direction, the base change of SpecS → SpecR to SpecRf is SpecSf →
SpecRf , where we use the map R→ S to view f as an element of S. In the other
direction, suppose that Y → SpecR is a morphism and there exist f1, . . . , fn ∈ R
such that Yi = Y ×SpecR SpecRfi is affine. We check that Y is affine by verifying
the conditions of HW2 problem 3: the elements f1, . . . , fn ∈ OY (Y ) generate the
unit ideal (since they do so already in R), and Yi is the open subscheme of Y
consisting of those points y for which fi /∈ mY,y (by the fact that morphisms of
schemes induce local homomorphisms of local rings).

(b) Combine (a) with problem 1.

(c) The fiber of x ∈ X is equal to the underlying space of the scheme Y ×X Specκ(x);
so to check that a finite morphism is quasi-finite, we may assume that X =
SpecK. But then Y = SpecA for A a finite K-algebra, and we know that such
an algebra has only finitely many connected components (e.g., because each one
must have positive dimension).

For an example of a quasi-finite morphism which is not finite, take the open
immersion

SpecK[T, T−1]→ SpecK[T ]

where K is any field. The inverse image of each point is either empty or a single
point, but the underlying map of rings is not finite.

6. (a) For Y,X two schemes over some base S, the graph of a morphism f : Y → X of
S-schemes is by definition the closed immersion Y → Y ×S X corresponding to
the pair (idY : Y → Y, f : Y → X) (if no base is specified, use the universal base
SpecZ). If L/K is a finite Galois extension of fields with group G, then each g ∈ G
defines a map L → L of rings over K and hence a morphism SpecL → SpecL
of schemes over SpecK, and its graph Γg is a closed immersion of SpecL into
SpecL×SpecK SpecL. The claim then is that SpecL×SpecK SpecL is the disjoint
union of open-and-closed subschemes, each of which is the image of one of these
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graphs; this amounts to the algebraic statement that L ⊗K L splits as a direct
sum of copies of L. For this, choose a primitive element α for L over K, let P (T )
be its minimal polynomial, and write

L⊗K L ∼= L⊗K K[T ]/(P (T )) ∼= L[T ]/(P (T )) =
∏

L[T ]/(T − αi) ∼=
∏

L

where P (T ) =
∏

i(T − αi).
(b) If L/K is purely inseparable and L 6= K, then they are both of some positive

characteristic p, and there exists some x ∈ L which has a p-th root y in L but not
in K. Now y⊗1−1⊗y is nonzero in L⊗KL, but its pth power is x⊗1−1⊗x = 0;
so SpecL×SpecK SpecL = Spec(L⊗K L) is not reduced.

7. It suffices to check the claim when Y is affine; in this case, X is itself quasicompact.
(Namely, Y is covered by opens whose inverse images are quasicompact, but only
finitely many are needed because Y is also quasicompact.) Pick open affine subsets
U1, . . . , Un which cover X. Because f is quasiseparated, for any i, j, the space X×X×YX

Ui×Y Uj is quasicompact, but this space is none other than Ui∩Uj. We can thus choose
finitely many open affine subsets Vijk of X that cover Ui∩Uj. Let F be a quasicoherent
sheaf on X; its pushforward is then the sheaf associated to the module which is the
kernel of the map

n⊕
i=1

F(Ui)→
n⊕

i,j=1

⊕
k

F(Vijk).
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