
Math 203B (Algebraic Geometry), UCSD, winter 2016
Solutions for problem set 5

1. The correct formulas are

F 0(M) = ker(×T1 : M →M) ∩ ker(×T2 : M →M)

F 1(M) =
{(m1,m2) ∈M ×M : T2m1 = T1m2}

(T1m,T2m) : m ∈M
F 2(M) = M/(image(×T1 : M →M) + image(×T2 : M →M))

F i(M) = 0 (i ≥ 3).

In other words, these are the cohomology groups of the complex

0→M
m 7→(T1m,T2m)−→ M ×M (m1,m2)→(T2m1−T1m2)−→ M → 0.

The proof that these form a universal cohomological functor is similar to the one-
variable case done in class.

2. For any exact sequence (in the usual orientation)

0→M → N → P → 0

the snake lemma yields an exact sequence

0→M [f ]→ N [f ]→ P [f ]→M/fM → N/fN → P/fP → 0,

where M [f ] = ker(×f : M →M). Consequently, the derived functors are

F 0(M) = M/fM

F 1(M) = M [f ]

F i(M) = 0 (i ≥ 2).

To see that these form a universal cohomological functor, let F 0 → F ′0 be a morphism
of functors and let F ′i be a cohomological functor. To obtain the correct morphism
F ′1(P )→ F 1(P ) = P [f ], choose an exact sequence (in the usual orientation)

0→M → N → P → 0

with N a free module, so that the snake lemma yields P [f ] = ker(M/fM → N/fN);
then use the maps F ′0(M)→M/fM,F ′0(N)→ N/fN to obtain a morphism F ′1(P )→
P [f ]. To see that this morphism is independent of choices, it suffices to compare N
with a larger free module N ⊕N ′; this is similar to the example done in class.
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3. (a) In one direction, if A is an abelian group which is an injective object, then it is
divisible: for any positive integer n and any a ∈ A, the map nZ → A taking n
to a must factor through the injection nZ → Z, and the image a′ ∈ A of 1 ∈ Z
satisfies na′ = a. In the other direction, to see that A being divisible implies A
being injective, using Zorn’s lemma (or transfinite induction or your favorite other
equivalent of the axiom of choice), it suffices to check the injectivity property for
an injection B → C where C/B is generated by a single element c. If C/B is
finite of order n, then by hypothesis we can divide the image of nc in A by n
and send c there. If C/B is infinite, we can send c wherever we like (to 0, for
example).

(b) Let F be the sheaf in question. Let G → H be an injective morphism of sheaves;
then the map Gx → Hx of stalks is injective for each x ∈ X. Let G → F be a
morphism of sheaves. For each x ∈ X, we have a map Fx → Ix and hence a map
Gx → Ix which factors through a map Hx → Ix. Now define the map H → F
taking s ∈ H(U) to the element of F(U) =

∏
x∈U Ix whose x-component is the

image of s ∈ Hx in Ix.

4. Start with a section s ∈ H(X). By definition, there exists a covering of X by some
open sets {Ui}i∈I such that the restriction of s to each Ui lifts to some s′i ∈ G(Ui);
we must find a way to choose these lifts so that they agree on overlaps. If I is a
two-element set, say I = {i, j}, we first pick s′i arbitrarily. We then choose some lift
tj ∈ G(Uj), use the flasque condition to find some section t′j ∈ G(Uj) whose restriction
to G(Ui ∩ Uj) equals the restriction of tj − s′i, then take s′j = tj − t′j.
To generalize to an arbitrary index set I, we use the axiom of choice to choose an
isomorphism of I with some ordinal, so as to obtain a well-ordering. We may then
construct the s′i by transfinite induction. There is nothing to check at limit steps.
To construct s′i given s′j for all j < i, we use the induction hypothesis to assemble a
lift on G(U) for U =

⋃
j<i Uj, then combine the lifts on U and Ui using the previous

paragraph.

5. (a) Identify the closed points of Pd−1
K with the projectivization of the dual vector

space V ∗. For each s ∈ V , the subset Us of P ∈ X for which s generates LP is
an open subset, and the elements of V define a map U → Pd−1

K (whose image is
contained in the affine (d−1)-space corresponding to the complement of the kernel
of s : V ∗ → K). By hypothesis, the Us cover all of X, so we get a well-defined
map X → Pd−1

K .

(b) With notation as in (a), note that Us is precisely the inverse image of the comple-
ment of the hyperplane in Pd−1

K cut out by s. Consequently, if s(P ) = 0, s(Q) 6= 0,
then P ∈ Us, Q /∈ Us and so P and Q must have distinct images.

(c) We may check the claim locally at a closed point P ∈ X. Let Q ∈ Pd−1
K be the

image of P ; the given condition implies that the map OPd−1
K ,Q → OX,P induces a
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surjective morphism of cotangent spaces. Since OX,P is a discrete valuation ring,
this implies that the morphism of local rings itself is surjective.

6. It suffices to check that for each nonnegative integer k, the residue is invariant when-
ever f has pole order at most k. In this case, we can formally write f = fkT

−k +
· · ·+ f−1T

−1 + · · · , and then the coefficient of T−1 dT in the image of f dT under the
substitution T 7→ a1T + a2T

2 + · · · depends only on f−k, . . . , f−1, a1, . . . , ak. In fact, it
can be written as some polynomial in these quantities with coefficients in Z depending
only on k (not on the ring R).

So now we must check that some specific polynomial in f−k, . . . , f−1, a1, . . . , ak with in-
teger coefficients is equal to the polynomial f−1. But to check that a multivariate poly-
nomial with integer coefficients is identically 0, it suffices to check that its evaluation
at any complex numbers is zero, and this follows immediately from the Cauchy inte-
gral formula from complex analysis: the coefficient of T−1 dT equals 1/(2πi) times the
integral of f dT around any simple closed curve which loops counterclockwise around 0
and is small enough not to contain any other singularities of f . Making a substitution
of the form T 7→ a1T + · · ·+ akT

k (there is no need to include any higher coefficients!)
does not affect the looping property.
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