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Sheaf cohomology

We now discuss the main points of sheaf cohomology, omitting many proofs for now
so that I can get to some applications. We may come back to some of the proofs later,
depending on time and interest.

1 The category of sheaves

Fix a topological space X. Throughout this lecture, we consider only sheaves of abelian
groups on X, as an abelian category. (This avoids some technical issues which I don’t want
to bring up yet.)

Theorem 1 (Grothendieck). The category of sheaves of abelian groups on X has enough
injectives.

Sketch of proof. Let F be a sheaf. For each x ∈ X, choose an injective object Ix for which
we can find an injective morphism Fx → Ix. Let G be the sheaf such that G(U) =

∏
x∈U Ix;

the maps Fx → Ix then define an injective map F → G. All that remains to check is that G
is injective; for this, see the homework.

Let Γ(X, •) be the global sections functor. By the theorem, this functor admits a universal
cohomological functor; those functors (also called derived functors of Γ) are commonly noted
H i(X, •). This means we have three notations for global sections: for F a sheaf,

F(X) = Γ(X,F) = H0(X,F).

Calculating these from the definition is generally hopeless. Fortunately, remember that we
can use resolutions by arbitrary acyclic objects, not just injectives, in order to compute sheaf
cohomology, and these are easier to come by. For example, we say F is flasque (or flabby,
this being the closest English equivalent) if for all U ⊆ V , the map F(V )→ F(U) is open.
This is not typical for, say, quasicoherent sheaves, since M →Mf is almost never surjective;
but for example the injective objects we used in the previous proof do have this property.

Lemma 2. Let 0→ F → G → H → 0 be an exact sequence and suppose F ,G are flasque.

(a) Then H is also flasque.

(b) Moreover, the sequence

0→ F(X)→ G(X)→ H(X)→ 0

is exact.

(c) We have H i(X,F) = 0 for all i > 0.
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Proof. We leave (a) and (b) as exercises. To check (c), we induct on i. Also, note that we
are free to change G; so let’s take it to be the sheaf constructed in the previous theorem. By
(b) and the long exact sequence, H1(X,F) injects into H1(X,G) = 0 (since G is injective),
so H1(X,F) = 0. Meanwhile, for i > 1, H i(X,F) is isomorphic to H i−1(X,H) = 0 by the
induction hypothesis.

Aside: it’s not hard to show that every injective sheaf is actually flasque, but we don’t
really need to know this (because we know how to make enough injectives which are also
obviously flasque).

This is still not so useful in practice. Here is what we will really use.

Theorem 3. Let X = SpecA be an affine scheme, and let F be a quasicoherent sheaf on
X. Then H i(X,F) = 0 for all i > 0.

Note that this immediately implies our earlier result that the global sections functor from
quasicoherent sheaves to A-modules is exact. On the other hand, when A is noetherian, one
can turn this around and use this exactness to prove the vanishing statement on cohomology;
this is described in Hartshorne, Theorem III.3.5.

Another corollary of this theorem is the following. For F a sheaf of abelian groups on X
and {Ui}i∈I an open cover of X labeled by an ordered index set I, define the Čech cohomology
groups Ȟ i(X,F , {Ui}) to be the cohomology groups of the complex

0→
∏
i

F(Ui)→
∏
i<j

F(Ui ∩ Uj)→
∏

i<j<k

F(Ui ∩ Uj ∩ Uk)→ · · ·

where (si)i 7→ (si − sj)i,j, (si,j)i,j 7→ (sj,k − si,k + si,j)i,j,k), and in general

(si1,...,im)i1,...,im 7→

(
m∑
k=0

(−1)ksi0,...,îk,...,im

)
i0,...,im

(where the hat means omit that index). These are not guaranteed to match the H i(X,F)
in general, but...

Lemma 4. If Hj(Ui1 ∩ · · · ∩ Uim ,F) = 0 for all j > 0 and all i1 < · · · < im, then there is a
canonical isomorphism Hj(X,F) ∼= Ȟj(X,F , {Ui}).

Proof. This follows from the existence of a certain spectral sequence. See Stacks Project, tag
01ET. (You might try looking at the case of a two-set cover by hand, in order to get the
basic idea.)

Corollary 5. If F is injective or flasque, then Ȟj(X,F , {Ui}) = 0 for all j > 0.

Corollary 6. Let X = SpecA be an affine scheme, let f1, . . . , fn ∈ A generate the unit ideal,
and let F be a quasicoherent sheaf on X. Then Ȟj(X,F , {D(fi)}ni=1) = 0 for all j > 0.

But we already know how to prove this directly (see past homework)! In fact, with some
effort, one can turn around and use this as the starting point to prove that quasicoherent
sheaves on affine schemes are acyclic; see Lemma 8.
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2 Some additional arguments

These will not be presented in class, but are here for your edification.
For U = {Ui}i∈I an open cover of X, we say that F is U-acyclic if Ȟj(X,F ,U) = 0 for all

j > 0. We’ll say that F is strongly Čech-acyclic if there exist a cofinal set of open coverings
U (i.e., every open covering can be refined to one of the given ones) for each of which F
is U -acyclic. This implies that F is Čech-acyclic, meaning that Ȟj(X,F) vanishes for all
j > 0, where Ȟj(X,F) is defined as the direct limit of Ȟj(X,F ,U) over all coverings U .

In general, we can’t say that Hj(X,F) = Ȟj(X,F) for all j; but this is definitely true
for j = 0, because in fact H0(X,F) = Ȟ0(X,F ,U) for each U .

Lemma 7. If Ȟ1(X,F) = 0, then for any exact sequence 0 → F → G → H → 0 the
sequence

0→ F(X)→ G(X)→ H(X)→ 0

is exact.

Proof. As usual, it suffices to check that G(X) → H(X) is surjective. Given s ∈ H(X),
there exists an open covering U of X such that for each i ∈ I, s lifts to a section ti ∈ G(Ui).
The differences ti− tj then define an element of Ȟ1(X,F ,U); by hypothesis, we can replace
U by a finer cover so that the element of Ȟ1(X,F ,U) vanishes. That is, there exist elements
ui ∈ F(Ui) with ui − uj = ti − tj; the elements ti − ui then glue to a section in G(X) lifting
s.

Lemma 8. If F|U is Čech-acyclic for each open set U in some basis of the topology of X,
then F is acyclic.

Proof. We will prove that H i(X,F) = 0 for i = 1, . . . ,m by induction on m, with empty
base case m = 0. Suppose the claim is given for some m. Given F , form the usual exact
sequence

0→ F → G → H → 0

where G is injective and flasque. By Lemma 7, taking sections over any open subset in a
basis of X gives an exact sequence. By the snake lemma, it follows that H is flasque and
hence Čech-acyclic by Corollary 5.

To prove the claim for m = 1, note that by Lemma 7, H0(X,G)→ H0(X,H) is surjective.
Therefore, in the exact sequence

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G) = 0,

the connecting homomorphism H0(X,H) → H1(X,F) is zero. Therefore H1(X,F) is
trapped between a zero map and a zero object, so it must be zero.

To prove the claim for m + 1 given the claim for m, note that

0 = Hm(X,G)→ Hm(X,H)→ Hm+1(X,F)→ Hm+1(X,G) = 0

is exact and Hm(X,H) = 0 by the induction hypothesis, so Hm+1(X,F) = 0 also.
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