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Cohomology of quasicoherent sheaves on projective spaces

We now focus on quasicoherent sheaves on projective spaces.

1 A note on closed subschemes

Suppose for a moment that j : X → W is a closed immersion. We have already discussed
the fact that if F is a quasicoherent sheaf on X, then j∗F is a quasicoherent sheaf on W . In
fact, we can say a bit more.

Theorem 1. (a) The functor j∗ defines an equivalence of categories between quasicoherent
sheaves on X and quasicoherent sheaves on W annihilated by I = ker(OW → f∗OX).

(b) For F a quasicoherent sheaf on W , the groups H i(X,F) and H i(W, j∗F) are canoni-
cally isomorphic for all i.

Proof. Based on previous statements, both results are easily seen to be true if W is affine.
From this, one may deduce a comparison for Čech cohomology groups, and then for sheaf
cohomology using spectral sequences.

For this reason, statements I make about Pd
R will typically have immediate consequences

for closed subschemes of Pd
R.

2 A useful exact sequence

When looking at cohomology on Pd
R, we will frequently use the following observation related

to the previous one. Let H be a hyperplane in X = Pd
R, e.g., the zero locus of xi for some

i ∈ {0, . . . , d}. Then for j : H → Pd
R the corresponding closed immersion, we have an exact

sequence
0→ OX(−1)→ OX → j∗OH → 0.

Twisting, we get exact sequences

0→ OX(n− 1)→ OX(n)→ j∗OH(n)→ 0.

(In fact, this sequence is easier to see when n� 0.)

3 Cohomology of twisting sheaves: the case d = 1

For F a quasicoherent sheaf on P1
R, we can compute H0(P1

R,F) and H1(P1
R,F) as the kernel

and cokernel of the map

F(D+(x0))×F(D+(x1))→ F(D+(x0x1)), (s0, s1) 7→ s0 − s1,
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and H i(P1
R,F) = 0 for all i > 0. Let’s do this for F = O(n), in which case the map is

xn
0R

[
x1

x0

]
⊕ xn

1R

[
x0

x1

]
→ xn

0R

[
x1

x0

,
x0

x1

]
.

We already have observed that the kernel is the set of homogeneous polynomials of degreee
n in x0, x1, which is nonzero if and only if n ≥ 0. As for the cokernel, we can write it as
x−10 x−11 times the set of homogeneous polynomials of degree n− 2 in x−10 , x−11 ; in particular,
it is nonzero if and only if n ≤ −2. To summarize, H0(X,O(n)) and H1(X,O(n)) are free
modules of respective ranks max{n + 1, 0} and max{1− n, 0}.

4 Cohomology of twisting sheaves: the general case

Let’s again take F = O(n) but now X = Pd
R with d ≥ 1 arbitrary. We again know that

H0(X,O(n)) is the set of homogeneous polynomials of degree n, which is zero if n < 0 and
otherwise is free of rank

(
n+d
d

)
. (Fast way to remember this binomial coefficient: write each

monomial as x0 · · ·x0×x1 · · ·×x1 · · · , then note that the monomials correspond to the choice
of the positions of d multiplication signs in a string of length n + d.)

Meanwhile, Hd(Pd
R,O(n)) is the cokernel of the map

d∏
i=0

O(n)(D+(x0 · · · x̂i · · ·xd))→ O(n)(D+(x0 · · · xd)),

and can be written as x−10 . . . x−1d times the set of homogeneous polynomials of degree n−d−1
in x−10 , . . . , x−1d . In particular, it is zero if n ≥ −d and otherwise is free of rank

(−n−1
d

)
.

What about the terms in the middle? We claim that H i(Pd
R,O(n)) = 0 for all 0 < i < d

and all n. We’ll complete the proof of this later; for the moment, let me illustrate the case
d = 2 using the exact sequence

0→ H0(P2
R,O(n− 1))→ H0(P2

R,O(n))→ H0(P1
R,O(n))

→ H1(P2
R,O(n− 1))→ H1(P2

R,O(n))→ H1(P1
R,O(n))

→ H2(P2
R,O(n− 1))→ H2(P2

R,O(n))→ 0.

For n ≥ 0, this sequence truncates to

0→ H0(P2
R,O(n− 1))→ H0(P2

R,O(n))→ H0(P1
R,O(n))

→ H1(P2
R,O(n− 1))→ H1(P2

R,O(n))→ 0,

and by inspection we see that H0(P2
R,O(n)) → H0(P1

R,O(n)) is surjective, so we deduce
that H1(P2

R,O(n − 1)) ∼= H1(P2
R,O(n)). For n ≤ 0, a similar truncation on the other end

yields H1(P2
R,O(n− 1)) ∼= H1(P2

R,O(n)).
In other words, if we take the sheaf F =

⊕
n∈ZO(n), then multiplication by x2 defines

a bijection on H1(P2
R,F). Now view S =

⊕
n∈ZH

1(P2
R,F) as a module over R[x0, x1, x2].
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On one hand, multiplication by x2 on S is bijective. On the other hand, if we localize at x2,
we get (a bunch of copies of) the cohomology of F on D+(xi) computed using the covering
D+(x0x2), D+(x1x2), D+(x2); and we know that’s zero because D+(xi) is an affine scheme.
These two facts combine to imply that S = 0, whence all of the H1(P2

R,O(n)) vanish.

5 Applications to coherent sheaves

All of these are due to Serre.

Theorem 2. Let j : X → Pd
R be a closed immersion. Let F be a coherent (quasicoherent

locally finitely generated) sheaf on X. Then there exists n0 ∈ Z such that for all n ≥ n0 and
all i > 0, H i(X,F(n)) = 0.

Proof. By replacing F with j∗F , we reduce immediately to the case X = Pd
R. We proceed by

descending induction on i, noting that the claim is automatic if i > d since we can compute
sheaf cohomology using the Čech complex corresponding to the cover by D+(x0), . . . , D+(xd).

By the previous theorem of Serre, we can find an index n1 ∈ Z such that F(n1) is
generated by finitely many global sections; that is, we can write down an exact sequence

0→ G → O⊕k → F(n1)→ 0

for some k ≥ 0. Twisting, we obtain

0→ G(n− n1)→ O(n− n1)
⊕k → F(n)→ 0

In the resulting exact sequence

H i(Pd
R,O(n− n1)

⊕k)→ H i(Pd
R,F(n))→ H i+1(Pd

R,G(n− n1))→ H i+1(Pd
R,O(n− n1)

⊕k)

the outside terms vanish as soon as n−n1 ≥ −d (this is only really at issue when i+ 1 = d).
Meanwhile, by the induction hypothesis, H i+1(Pd

R,G(n−n1)) vanishes for n sufficiently large;
it follows that H i(Pd

R,F(n)) also vanishes for i sufficiently large.

Corollary 3. Let j : X → Pd
R be a closed immersion. Let F be a coherent (quasicoherent

locally finitely generated) sheaf on X. Then for any exact sequence

0→ F → G → H → 0

of sheaves of modules, there exists n0 ∈ Z such that for all n ≥ n0 and all i > 0,

0→ H0(X,F(n))→ H0(X,G(n))→ H0(X,H(n))→ 0

is exact.

Theorem 4. Suppose that the ring R is noetherian. Let j : X → Pd
R be a closed immersion.

Let F be a coherent (quasicoherent locally finitely generated) sheaf on X. Then the groups
H i(X,F) are finitely generated R-modules for all i ≥ 0.
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Proof. Yet again, we reduce to the case X = Pd
R. Again, we operate by descending induction

on i, the case i > d being clear. For some n, there exists an exact sequence

0→ G(−n)→ O(−n)⊕k → F → 0.

In the resulting exact sequence

H i(Pd
R,O(−n)⊕k)→ H i(Pd

R,F)→ H i+1(Pd
R,G(−n))→ H i+1(Pd

R,O⊕k),

the outside terms are finitely generated R-modules by calculation, while H i+1(Pd
R,G(−n)) is

a finitely generated R-module by the induction hypothesis. It follows that H i(Pd
R,F) is a

finitely generated R-module, completing the induction.
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