Math 203B: Algebraic Geometry
UCSD, winter 2016, Kiran S. Kedlaya
Motivation for schemes

In Math 203A, algebraic geometry was presented in the language of varieties. This
formulation involves two key ingredients. One of these ingredients is Hilbert’s Nullstellensatz,
which identifies the points of an affine space over an algebraically closed field with the
maximal ideals of a polynomial ring; this makes it possible to translate geometric statements
about points into statements of algebra. The other ingredient is Cartan’s definition of sheaves
(adopted in algebraic geometry by Serre), which can be used to assemble spaces together out
of affine pieces (e.g., projective varieties) in a fashion closely analogous with the construction
of various classes of manifolds.

While the language of varieties is sufficient to articulate many statements of algebraic
geometry, we are fortunate to have a much more flexible and powerful framework available to
replace it: Grothendieck’s language of schemes. In the world of schemes, one glues together
objects built not out of polynomial rings over a field and quotients thereof, but entirely
arbitrary rings!! This incorporates Zariski’s insight that for a general ring, it is the set of
prime ideals, rather than maximal ideals, that can be provided with a meaningful topology.

In this lecture, rather than starting directly with the definition, I would instead like to
give a summary of a few key ideas we will be encountering in this course (and Math 203C).

e Not all objects are irreducible.

In classical algebraic geometry, only irreducible spaces were allowed to be called va-
rieties; for instance, the union of two distinct lines in the affine or projective plane
was excluded. From the point of view of schemes, there is no reason at all to exclude
reducible spaces.

e Not all objects are reduced.

Under the Nullstellensatz, algebraic subsets of an affine space correspond to radical
ideals of the polynomial ring. But what about nonradical ideals? In the world of
schemes, they also correspond to geometric objects. This makes sense if one thinks
about geometric families, e.g., conics in the plane. If one considers a family of plane
conics over C cut out by
x? + y2 + 122

where t is a varying parameter, the degenerate case t = 0 corresponds to a pair of
distinct lines. But in the family

o+ t(y? + 2P,

the degenerate case t = (0 corresponds to the single line ¢ = 0. In order for this
degeneration to behave well (e.g., to preserve the Hilbert polynomial), we must treat
it as two copies of the line, which we can naturally do in the context of schemes.

Once and for all, throughout Math 203, all rings will be commutative and with unit.



e Not all spaces are Hausdorff (separated).

In classical algebraic geometry, varieties are usually required to be Hausdorff. So for
example, you cannot glue together two copies of the affine line along the complement
of 0. In the world of schemes, you can do this. (Originally this was excluded from
the definition of a scheme also, but this was later judged to be a mistake and the
terminology was changed.)

e Not all fields are algebraically closed.

In many applications of algebraic geometry, the natural choice of a base field is not
algebraically closed. For instance, algebraic geometry over the real numbers has ap-
plications in combinatorial geometry, statistics, robotics, computer vision, and more.
Algebraic geometry over finite fields has applications in combinatorial geometry, cod-
ing theory, cryptography, and more. And of course, algebraic geometry over number
fields lies at the heart of number theory. While one can adapt the statement of the
Nullstellensatz to handle fields which are not algebraically closed, this is a more com-
plicated solution than switching to schemes (a bit like patching the geocentric model
of planetary motion with epicycles rather than switching to the heliocentric model).

e Think categorically.

In the 20th century, it became clear to mathematicians that structured mathematical
objects (e.g., algebraic structures like groups and rings, topological structures like
topological spaces and manifold, etc.) are best handled by treating them as members
of some sort of over-structure that keeps track both of the objects themselves, and
of the structure-preserving maps between them. The appropriate abstraction for this
is the notion of a category; the members of a category are called objects, and the
structure-preserving maps between objects are called morphisms. (E.g., think of rings
and ring homomorphisms, or topological spaces and continuous maps.)

Thinking categorically has the advantage of making it easier to guess the correct ana-
logues of standard constructions when working in an unfamiliar environment: typically,
the recipe for building the correct analogous object is less important than the universal
properties that it satisfies. For schemes, one important example of this is products: the
product of two schemes X and Y should be a scheme X XY equipped with morphisms
X xY — X, X xY — Y with the property that for every scheme Z and every pair of
morphisms Z — X, Z — Y, there should be a unique morphism Z — X x Y such that
the compositions Z - X xY — X, Z — X XY — Y agree with the original ones. In
particular, X x Y is “unique up to unique isomorphism”: given any other candidate
(again equipped with maps to X and Y') satisfying the same condition, each one is
forced to admit a unique map to the other. (Thought exercise: convince yourself that
in the category of sets, this characterizes the usual Cartesian product.)

e Work relatively.



Continuing in the categorical vein, in the theory of schemes, the familiar adjectives of
algebraic geometry (e.g., projective, smooth) typically apply not to individual objects,
but rather to morphisms. How this relates to the theory of varieties is that a variety
defined over a field K corresponds to a scheme X plus a morphism from that scheme
to (the scheme corresponding to) K itself, and properties of the original variety will
correspond to properties of that so-called structure morphism.

This becomes less counterintuitive if you think about field automorphisms. For in-
stance, if you define a variety in terms of some equations over C, you can apply complex
conjugation to all of the coefficients to get a new variety. The corresponding schemes
are abstractly isomorphic, but we can keep track of the difference by remembering
the structure morphisms. If we take more exotic algebraic automorphisms over C, we
can put this point in starker relief: applying an algebraic automorphism can actually
change the homotopy type of the associated topological space! The point is that in
order to pass from the scheme to the topological space, one needs to use the structure
morphism in an essential way.

Remembering the structure morphism also helps us understand products: the con-
struction we gave above is not quite the right analogue of the product of varieties. The
correct analogue, accounting for structure morphisms, is a fiber product: given three
schemes X, Y, S and maps X — 5,Y — S, there exists a scheme X xgY equipped with
morphisms X XxgY — X, X XgY — Y such that the compositions X xgY — X — S,
X xgY — Y — S coincide, and given any other pair of morphisms 7 — X, 7Z — Y
such that the compositions Z — X — S, Z — Y — S coincide, there is a unique mor-
phism Z — X XgY such that the compositions Z - X xgY - X, Z - X xgY =Y
agree with the given ones. To avoid the pain of having to write out sentences like that
repeatedly, we typically represent them in a graphical form:

with the interpretation that following any two paths between two points in the diagram
should lead to sequences of morphisms with the same composition, i.e., the diagram
commutes. (In the category of sets, the fiber product corresponds to taking the subset
of the cartesian product X x Y consisting of those pairs (z,y) for which x and y have
the same image in S.)

The base may vary.

As we just discussed, in the theory of schemes, geometric properties are mostly encoded
as properties of morphisms rather than properties of objects. So far we have been



thinking of cases where the target of this morphism is a field; however, that target
can perfectly well itself be another, more interesting scheme. For example, if it is
itself a variety over a field, then we are looking at a family of geometric objects, such
as the families of conics I considered earlier (which live inside projective 2-space over
an affine line). This is made extremely useful by one of the distinguishing features
of algebraic geometry: often the geometric objects of a given type occur in universal
families described by algebraic invariants (e.g., the j-invariant in the theory of elliptic
curves).

One way to interpret the fiber product we discussed earlier is: if X — S is a family
of objects and Y — S is any other morphism, then X xgY — Y corresponds to the
“pullback family” in which the fiber over a point y € Y is a copy of the fiber of the
point of S to which y maps. That is, forming the fiber product amounts to changing the
base of the original morphism; we will mostly be interested in properties of morphisms
that are invariant under such a base change.

A more exotic way to exploit the relative nature of properties of morphisms is to work
not over a field, but over a ring. For example, if one starts with a morphism to the
ring of integers Z, then for any prime number p, the reduction map Z — F, will
correspond to a morphism of schemes in the other direction (just as for varieties, this
correspondence is contravariant). Given a morphism to Z, we can then change base to
[F,; this is an algebro-geometric form of “reduction modulo p” which is impossible to
articulate in the language of varieties. Number theorists use this all the time, but it
occurs also in other aspects of algebraic geometry: there are statements which make no
apparent reference to positive characteristic for which the easiest proof (or sometimes
the only known proof) involves reduction modulo p (e.g., Mori’s bend-and-break lemma
in the minimal model program).

Not all objects are noetherian.

By contrast with quotients of polynomial algebras over a ring, arbitrary rings are not
noetherian. Consequently, when discussing schemes, we will at certain points be forced
to choose between imposing extra noetherian conditions or making weaker statements
than would otherwise be possible. However, we will get quite far before being forced
into this corner! In fact, it may be clarifying to see how much can be done without
using a noetherian hypothesis as a crutch.

Moreover, rings which are not noetherian do occasionally play a role in interesting
algebraic geometry. My favorite example is in characteristic p, where Galois theory
works best for fields which are perfect (i.e., the p-th power map is not only an endo-
morphism, but an automorphism). Similarly, certain statements about rings behave
between when the rings are perfect in the same sense, but perfectness is almost entirely
incompatible with noetherianness; for instance, a quotient of a polynomial ring over a
field cannot be perfect unless it is itself a direct sum of fields.



