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Projective and proper morphisms

In this lecture, we will need to pass freely between closed subsets and closed subschemes.
In general the same closed subset corresponds to multiple closed subschemes, but not if we
consider only reduced schemes.

Lemma 1. Let X be a scheme.

(a) Every closed subset S of X is the image of a unique closed immersion i : Sred → X
with S reduced.

(b) In (a), if f : Y → X is a morphism of schemes with Y reduced and f(Y ) ⊆ S, then f
factors through i.

(c) There is a unique (up to unique isomorphism) closed immersion fX : Xred → X with
Xred reduced and f(Xred) = X.

(d) Any morphism Y → X of schemes with Y reduced factors uniquely through Xred.

(e) The assignment X 7→ Xred is functorial, and for any morphism g : Y → X the diagram

Yred

gred
��

fY // Y

g

��
Xred

fX // X

commutes.

Proof. Everything reduces to the case where X = SpecR is affine. To prove (a), write S as
V (I) for some ideal I of R and take Sred = Spec(R/

√
I). To prove (b), we may assume that

Y is also affine, namely Y = Spec(T ) with T reduced. The ideal
√
I is the intersection of

the prime ideals p containing I; by hypothesis, the morphism R → T induced by f has the
property that every element of

√
I maps to an element contained in all of the prime ideals

of T , which must be zero because T is reduced. Now note that (c) is the special case Y = X
of (a); (d) is the special case Y = X of (b); and (e) follows from (d).

We will also need some facts about minimal prime ideals.

Lemma 2. For any ring R and any prime ideal p of R, there exists a minimal prime ideal
of R contained in p.

Proof. Because the intersection of a descending chain of prime ideals is a prime ideal, this
follows from Zorn’s lemma.

Lemma 3. Let R be a reduced ring and let p be a minimal prime ideal of R. Then Rp is a
field.
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Proof. Since R is reduced, Rp is reduced. Since p is minimal, Rp has no prime ideals other
than its maximal ideal. The intersection of the prime ideals of Rp is on one hand equal to 0
(because R is reduced) and equal to the maximal ideal of Rp (because this is the only prime
ideal in the intersection). Hence the maximal ideal of Rp is 0, so Rp is a field.

The definition of properness involves checking that various maps of schemes are closed
maps of topological spaces (i.e., the image of any closed subset is closed). Checking this
condition is facilitated by the following lemma, which in cases of interest reduces closedness
to a weaker property.

Let X be a scheme. For x, y ∈ X, we say that y is a specialization of X if y belongs to the
closure of {x}. A subset S of X is stable under specialization if for all x ∈ S and all y ∈ X,
if y is a specialization of x then y ∈ S. Clearly a closed set is stable under specialization,
but not conversely: if X = Spec k[t], then every point is a specialization of the generic point,
but no two other points are specializations of each other, so any infinite set of closed points
is stable under specialization but not closed.

Lemma 4. Let f : Y → X be a quasicompact morphism of schemes and suppose that f(Y )
is stable under specialization. Then f(Y ) is closed.

Proof (from Hartshorne, Lemma II.4.5). We start with some reduction steps. Using Lemma 1,
we may assume that X and Y are reduced and that f has dense image (by replacing X with
the closure of f(Y )). Under these conditions, we must check that any given x ∈ X belongs
to f(Y ); for this, we may replace X with an open affine neighborhood of x. That is, we may
assume that X = Spec(R) is affine (and still reduced).

Since f is quasicompact and X is now affine, Y is a finite union of finitely many open
affine subschemes Y1, . . . , Yn. Since f(Y ) = f(Y1)∪ · · · ∪ f(Yn) is dense, there must exist an
index i for which x belongs to the closure of f(Yi). (Warning: we cannot ensure that each
f(Yi) is itself stable under specialization. That is, we cannot formally reduce the lemma to
the case of an affine morphism.) By Lemma 1, the closure of f(Yi) can be viewed as the
image of a closed immersion Xi → X with Xi reduced through f : Yi → X factors. If we
put Xi = Spec(Ri) and Yi = Spec(Si), we now have a map Spec(Si)→ Spec(Ri) with dense
image, and moreover x ∈ Spec(Ri).

The point x corresponds to a prime ideal p of Ri. Apply Lemma 2 to construct a minimal
prime ideal p′ of Ri contained in p, and let x′ be the corresponding point of Xi. Note that
Ri,p′ is a field by Lemma 3. Also, x is a specialization of x′, so to finish the proof it will
suffice to check that x′ belongs to the image of Yi → Xi (and hence to the image of f).

Since Spec(Si)→ Spec(Ri) has dense image, Ri → Si must be injective: any element of
Ri mapping to zero in Si gives a section of the structure sheaf on Spec(Ri) with zero stalks
at a dense subset, and hence everywhere. Since localization is flat, Ri,p′ → Si⊗Ri

Ri,p′ is also
injective, so in particular Si ⊗Ri

Ri,p′ is a nonzero ring. It thus admits at least one prime
ideal, which must contract to zero in the field Ri,p′ and thus to the ideal p in Ri. This proves
the stated claim.

A morphism of schemes f : Y → X is universally closed if for any morphism Z → X, the
map Y ×Z X → Z is a closed map of topological spaces (the image of any closed subset is
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closed). Note that it suffices to check this condition for Z affine and reduced (by Lemma 1).
A morphism of schemes is proper if it is separated, of finite type, and universally closed.

For example, any closed immersion is proper: it is affine (hence separated), of finite type
(trivially), and universally closed (it’s enough to check closed, which is because a closed
immersion is a homeomorphism to a closed subset of the target).

The properness condition is meant to capture the idea of a compact topological space;
this suggests that projective spaces should be proper over their bases. The fact that this is
correct is a validation of the definition of properness!

Theorem 5. The map f : Pn
Z → Spec(Z) is proper.

The usual proof of this result uses the valuative criterion for properness (see, e.g.,
Hartshorne, Theorem II.4.7). I will give a different (but closely related) proof, in which
the case n = 1 is treated directly, and the general case is reduced to the n = 1 case. (The
treatment of the n = 1 case amounts to the construction of valuation rings as in Atiyah-
Macdonald, Lemma 5.20.)

Lemma 6. Let R be an integral domain and let L be a field containing Frac(R). For t ∈ L
nonzero, let R[t], R[t−1] denote the R-subalgebras of L generated by t, t−1. Then the natural
map

Spec(R[t]) ∪ Spec(R[t−1])→ Spec(R)

is surjective.

Note that the same statement formally holds with t = 0 if we declare R[t−1] to be the
zero ring, or with t =∞ if we declare R[t] to be the zero ring.

Proof. Suppose by way of contradiction that x ∈ Spec(R) is not in the image. Let p be the
prime ideal corresponding to x; then pRp[t] = Rp[t] and pRp[t

−1] = Rp[t
−1]. This means that

for some m,n ≥ 0, there exist u0, . . . , um, v0, . . . , vn ∈ pRp such that

1 = u0 + u1t + · · ·+ umt
m = v0 + v1t

−1 + · · ·+ vnt
−n.

We are free to choose m,n as small as possible. Suppose without loss of generality that
m ≥ n. Since v0 ∈ pRp, 1− v0 is a unit in Rp, so we have

tn = (1− v0)
−1v1t

n−1 + · · ·+ (1− v0)
−1vn

But then I can rewrite the relation 1 = u0 + · · ·+umt
m replacing tm with (1− v0)

−1v1t
m−1 +

· · · + (1 − v0)
−1vnt

m−n, reducing the value of m. This contradiction yields the desired
result.

Although it is not logically necessary to do this case first, it may be helpful conceptually
to see how Lemma 6 applies to the case n = 1 of Theorem 5.

Lemma 7. Let R be an integral domain and put K = Frac(R). Let Z be a closed subset of
P1
R meeting P1

K. Then Z → Spec(R) is surjective.
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The idea is to get surjectivity by trying to construct a section of the map P1
R → Spec(R)

landing inside Z. This may not quite work over R, but it will work over a slightly larger
ring.

Proof. Choose z ∈ Z ∩ P1
K . If z is the generic point of P1

K , then Z = P1
R and we are done.

Otherwise, z is a closed point of P1
K whose residue field L is a finite extension of K. Write

z = [z0 : z1] in homogeneous coordinates with z0, z1 ∈ L. Put t = z1/z0 ∈ L ∪ {∞}.
If t 6= ∞, then t defines a section s : Spec(R[t]) → P1

R[t] of the projection map, under

which the generic point of Spec(R[t]) maps to a point z′ of P1
L projecting to z in P1

K . In
particular, the closure of z′ in P1

R[t] is the whole image of s, so the projection of this image back

to P1
R must be contained in Z. Therefore, any point in the image of Spec(R[t]) → Spec(R)

is in the image of Z.
Similarly, if t 6= 0, then any point in the image of Spec(R[t−1])→ Spec(R) is in the image

of Z. But by Lemma 6, this covers all of Spec(R).

In case z0, z1 ∈ R, the rings Spec(R[t]) and Spec(R[t−1]) turn out to be an affine covering
of the blowup of Spec(R) along the ideal (z0, z1). We’ll come back to this point later.

The following corollary of Lemma 7 will be useful on the homework (for proving that
finite morphisms are proper). This is basically the going-up theorem of commutative algebra
(Atiyah-Macdonald, Theorem 5.10).

Corollary 8. Let R be an integral domain and let f : Spec(S) → Spec(R) be a finite
morphism. If S ⊗R Frac(R) 6= 0, then f is surjective.

The condition that S ⊗R Frac(R) 6= 0 is equivalent to saying that the map R → S is
injective (as in the proof of Lemma 4).

Proof. By induction on the number of generators, we may assume that S ∼= R[x]/(P ) for
some monic polynomial P ∈ R[x]. But then Spec(S) admits a closed immersion into P1

R

(and also A1
R), so the surjectivity follows from Lemma 7.

Proof of Theorem 5. It is easy to check directly that the map f is separated (homework)
and it is clear that it is of finite type. The difficulty then is to check that f is universally
closed; that is, we must check that for any reduced ring R and any closed subscheme Z of
Pn
R, the image of f : Z → Spec(R) is closed. (Really we are supposed to check images of

closed subsets of Pn
R, but by Lemma 1 these all arise from closed subschemes.) Since Z → Pn

R

is quasicompact (it’s a closed immersion) and Pn
R → Spec(R) is quasicompact (obvious), by

Lemma 4 we need only check that f(Z) is stable under specialization.
Pick any x, y ∈ Spec(R) such that y is a specialization of x and x ∈ f(Z); we need to

show that also y ∈ f(Z). Using Lemma 1, we may replace Spec(R) with the closure of x,
i.e., the quotient R/p where p is the ideal of R corresponding to x. In this case, R is an
integral domain and x = Spec(K) for K = Frac(R). In case n = 1, Lemma 7 proves the
claim. The general case follows by a variant of the same argument, as follows.

Fix homogeneous coordinates on Pn
R. By hypothesis, the restriction of Z to Pn

K is a
nonempty closed subscheme, so it must contain a point z whose residue field is an extension
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L of K. (We can make L finite over K by choosing a closed point and invoking the Null-
stellensatz, but this is not really necessary.) Choose an L-valued point z′ ∈ P1

L lifting z, and
write z′ in homogeneous coordinates as [z0 : · · · : zn] with z0, . . . , zn ∈ L.

Pick x ∈ Spec(R). By applying Lemma 7 repeatedly, we construct an R-subalgebra S
of L such that x belongs to the image of Spec(S) → Spec(R) and for all i, j ∈ {0, . . . , n},
either zi/zj or zj/zi (or both) is contained in S.

Under the partial order by divisibility in S, any two of z0, . . . , zn are comparable. There
must then be a least element among this set, which we may take to be z0; then z1/z0, . . . , zn/z0 ∈
S. As in Lemma 7, we get a section Spec(S)→ Pn

S of the projection map whose composition
with the map Pn

S → Pn
R has image in Z (because closure of image contains image of closure).

Since Spec(S) covers x, so then must Z.
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