Math 203B: Algebraic Geometry
UCSD, winter 2020, Kiran S. Kedlaya
Projective and proper morphisms

In this lecture, we will need to pass freely between closed subsets and closed subschemes.
In general the same closed subset corresponds to multiple closed subschemes, but not if we
consider only reduced schemes.

Lemma 1. Let X be a scheme.

(a) Every closed subset S of X is the image of a unique closed immersion i : Sieq — X
with S reduced.

(b) In (a), if f:Y — X is a morphism of schemes with Y reduced and f(Y) C S, then f
factors through 1.

(¢c) There is a unique (up to unique isomorphism) closed immersion fx : Xiea — X with
Xrea reduced and f(Xreq) = X.

(d) Any morphism Y — X of schemes with Y reduced factors uniquely through Xieq.
(e) The assignment X — X,eq is functorial, and for any morphism g : Y — X the diagram
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Proof. Everything reduces to the case where X = Spec R is affine. To prove (a), write S as
V(I) for some ideal I of R and take S;eq = Spec(R/+v/T). To prove (b), we may assume that
Y is also affine, namely Y = Spec(T') with T reduced. The ideal v/T is the intersection of
the prime ideals p containing I; by hypothesis, the morphism R — T induced by f has the
property that every element of /I maps to an element contained in all of the prime ideals
of T, which must be zero because T is reduced. Now note that (c) is the special case Y = X
of (a); (d) is the special case Y = X of (b); and (e) follows from (d). O

We will also need some facts about minimal prime ideals.

Lemma 2. For any ring R and any prime ideal p of R, there exists a minimal prime ideal
of R contained in p.

Proof. Because the intersection of a descending chain of prime ideals is a prime ideal, this
follows from Zorn’s lemma. O

Lemma 3. Let R be a reduced ring and let p be a minimal prime ideal of R. Then R, is a
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Proof. Since R is reduced, R, is reduced. Since p is minimal, R, has no prime ideals other
than its maximal ideal. The intersection of the prime ideals of R, is on one hand equal to 0
(because R is reduced) and equal to the maximal ideal of R, (because this is the only prime
ideal in the intersection). Hence the maximal ideal of R, is 0, so R, is a field. O

The definition of properness involves checking that various maps of schemes are closed
maps of topological spaces (i.e., the image of any closed subset is closed). Checking this
condition is facilitated by the following lemma, which in cases of interest reduces closedness
to a weaker property.

Let X be a scheme. For z,y € X, we say that y is a specialization of X if y belongs to the
closure of {x}. A subset S of X is stable under specialization if for all z € S and all y € X,
if y is a specialization of x then y € S. Clearly a closed set is stable under specialization,
but not conversely: if X = Spec k[t], then every point is a specialization of the generic point,
but no two other points are specializations of each other, so any infinite set of closed points
is stable under specialization but not closed.

Lemma 4. Let f:Y — X be a quasicompact morphism of schemes and suppose that f(Y)
is stable under specialization. Then f(Y) is closed.

Proof (from Hartshorne, Lemma I1.4.5). We start with some reduction steps. Using Lemma 1,
we may assume that X and Y are reduced and that f has dense image (by replacing X with
the closure of f(Y')). Under these conditions, we must check that any given x € X belongs
to f(Y); for this, we may replace X with an open affine neighborhood of z. That is, we may
assume that X = Spec(R) is affine (and still reduced).

Since f is quasicompact and X is now affine, Y is a finite union of finitely many open
affine subschemes Y),...,Y,. Since f(Y) = f(Y1)U---U f(Y,) is dense, there must exist an
index ¢ for which z belongs to the closure of f(Y;). (Warning: we cannot ensure that each
f(Y;) is itself stable under specialization. That is, we cannot formally reduce the lemma to
the case of an affine morphism.) By Lemma 1, the closure of f(Y;) can be viewed as the
image of a closed immersion X; — X with X; reduced through f :Y; — X factors. If we
put X; = Spec(R;) and Y; = Spec(S;), we now have a map Spec(S;) — Spec(R;) with dense
image, and moreover x € Spec(R;).

The point x corresponds to a prime ideal p of R;. Apply Lemma 2 to construct a minimal
prime ideal p’ of R; contained in p, and let ' be the corresponding point of X;. Note that
R, is a field by Lemma 3. Also, z is a specialization of z’, so to finish the proof it will
suffice to check that 2z’ belongs to the image of Y; — X; (and hence to the image of f).

Since Spec(S;) — Spec(R;) has dense image, R; — S; must be injective: any element of
R; mapping to zero in S; gives a section of the structure sheaf on Spec(R;) with zero stalks
at a dense subset, and hence everywhere. Since localization is flat, R;y — S; ®p, R; is also
injective, so in particular S; ®p, R;, is a nonzero ring. It thus admits at least one prime
ideal, which must contract to zero in the field R;, and thus to the ideal p in R;. This proves
the stated claim. O

A morphism of schemes f : Y — X is universally closed if for any morphism Z — X, the
map Y Xz X — Z is a closed map of topological spaces (the image of any closed subset is
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closed). Note that it suffices to check this condition for Z affine and reduced (by Lemma 1).
A morphism of schemes is proper if it is separated, of finite type, and universally closed.

For example, any closed immersion is proper: it is affine (hence separated), of finite type
(trivially), and universally closed (it’s enough to check closed, which is because a closed
immersion is a homeomorphism to a closed subset of the target).

The properness condition is meant to capture the idea of a compact topological space;
this suggests that projective spaces should be proper over their bases. The fact that this is
correct is a validation of the definition of properness!

Theorem 5. The map f : P} — Spec(Z) is proper.

The usual proof of this result uses the wvaluative criterion for properness (see, e.g.,
Hartshorne, Theorem 11.4.7). I will give a different (but closely related) proof, in which
the case n = 1 is treated directly, and the general case is reduced to the n = 1 case. (The
treatment of the n = 1 case amounts to the construction of valuation rings as in Atiyah-
Macdonald, Lemma 5.20.)

Lemma 6. Let R be an integral domain and let L be a field containing Frac(R). Fort € L
nonzero, let R[t], R[t™!] denote the R-subalgebras of L generated by t,t=*. Then the natural
map

Spec(R[t]) U Spec(R[t™']) — Spec(R)

18 surjective.

Note that the same statement formally holds with ¢ = 0 if we declare R[t™!] to be the
zero ring, or with ¢ = oo if we declare R[t] to be the zero ring.

Proof. Suppose by way of contradiction that x € Spec(R) is not in the image. Let p be the
prime ideal corresponding to z; then pR,[t] = R,[t] and pR,[t~'] = R,[t™!]. This means that
for some m,n > 0, there exist uo, ..., Un, Vo, ..., v, € pR, such that

L=ug+ut+ - Funt™=vo+vit - Fut "

We are free to choose m,n as small as possible. Suppose without loss of generality that
m > n. Since vy € pR,, 1 — vy is a unit in R,, so we have

t" = (1 —vo) topt" - (1 —wp) M,

But then I can rewrite the relation 1 = ug + - - - + u,,t™ replacing ™ with (1 —vg) to ™ ! +
<o+ (1 = vo)tut™ ™, reducing the value of m. This contradiction yields the desired
result. ]

Although it is not logically necessary to do this case first, it may be helpful conceptually
to see how Lemma 6 applies to the case n = 1 of Theorem 5.

Lemma 7. Let R be an integral domain and put K = Frac(R). Let Z be a closed subset of
P} meeting Pk.. Then Z — Spec(R) is surjective.
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The idea is to get surjectivity by trying to construct a section of the map P} — Spec(R)
landing inside Z. This may not quite work over R, but it will work over a slightly larger
ring.

Proof. Choose z € Z NP} If z is the generic point of Pk, then Z = P} and we are done.
Otherwise, z is a closed point of Pk whose residue field L is a finite extension of K. Write
z = |20 : z1] in homogeneous coordinates with zg, 2y € L. Put t = z1/zy € L U {o0}.

If t # oo, then ¢ defines a section s : Spec(R[t]) — P}%[t] of the projection map, under
which the generic point of Spec(R[t]) maps to a point 2’ of P} projecting to z in Pk. In
particular, the closure of 2’ in ]P’}%[t] is the whole image of s, so the projection of this image back
to P} must be contained in Z. Therefore, any point in the image of Spec(R|[t]) — Spec(R)
is in the image of Z.

Similarly, if ¢ # 0, then any point in the image of Spec(R[t™!]) — Spec(R) is in the image
of Z. But by Lemma 6, this covers all of Spec(R). O

In case 29,21 € R, the rings Spec(R|[t]) and Spec(R[t!]) turn out to be an affine covering
of the blowup of Spec(R) along the ideal (2o, z1). We'll come back to this point later.

The following corollary of Lemma 7 will be useful on the homework (for proving that
finite morphisms are proper). This is basically the going-up theorem of commutative algebra
(Atiyah-Macdonald, Theorem 5.10).

Corollary 8. Let R be an integral domain and let f : Spec(S) — Spec(R) be a finite
morphism. If S ®pg Frac(R) # 0, then f is surjective.

The condition that S ®g Frac(R) # 0 is equivalent to saying that the map R — S is
injective (as in the proof of Lemma 4).

Proof. By induction on the number of generators, we may assume that S = R[z|/(P) for
some monic polynomial P € R[z]. But then Spec(S) admits a closed immersion into Pk
(and also AL), so the surjectivity follows from Lemma 7. O

Proof of Theorem 5. It is easy to check directly that the map f is separated (homework)
and it is clear that it is of finite type. The difficulty then is to check that f is universally
closed; that is, we must check that for any reduced ring R and any closed subscheme Z of
P%, the image of f : Z — Spec(R) is closed. (Really we are supposed to check images of
closed subsets of P, but by Lemma 1 these all arise from closed subschemes.) Since Z — P,
is quasicompact (it’s a closed immersion) and P — Spec(R) is quasicompact (obvious), by
Lemma 4 we need only check that f(Z) is stable under specialization.

Pick any z,y € Spec(R) such that y is a specialization of z and x € f(Z); we need to
show that also y € f(Z). Using Lemma 1, we may replace Spec(R) with the closure of z,
i.e., the quotient R/p where p is the ideal of R corresponding to x. In this case, R is an
integral domain and x = Spec(K) for K = Frac(R). In case n = 1, Lemma 7 proves the
claim. The general case follows by a variant of the same argument, as follows.

Fix homogeneous coordinates on P%. By hypothesis, the restriction of Z to P} is a
nonempty closed subscheme, so it must contain a point z whose residue field is an extension
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L of K. (We can make L finite over K by choosing a closed point and invoking the Null-
stellensatz, but this is not really necessary.) Choose an L-valued point 2z’ € P} lifting z, and
write 2’ in homogeneous coordinates as [z : - -« : z,] with zg,..., 2, € L.

Pick x € Spec(R). By applying Lemma 7 repeatedly, we construct an R-subalgebra S
of L such that x belongs to the image of Spec(S) — Spec(R) and for all 7,5 € {0,...,n},
either z;/z; or zj/z; (or both) is contained in S.

Under the partial order by divisibility in S, any two of zy, ..., 2, are comparable. There
must then be a least element among this set, which we may take to be zg; then 21 /20, . .., 2,/20 €
S. Asin Lemma 7, we get a section Spec(S) — P% of the projection map whose composition
with the map P% — P}, has image in Z (because closure of image contains image of closure).
Since Spec(S) covers x, so then must Z. O



