Math 203B (Algebraic Geometry), UCSD, winter 2020 Problem Set 3 (due Wednesday, January 29)

Solve the following problems, and turn in the solutions to at least four of them.

1. (a) Prove that for any locally ringed space X, there is a unique morphism $X \rightarrow$ $\operatorname{Spec} \mathcal{O}(X)$ for which taking global sections yields the identity morphism on $\mathcal{O}(X)$. (Hint: this is similar to the proof from lecture that every morphism of affine schemes comes from a morphism of rings.)
(b) Let X be the complex-analytic projective n-space with homogeneous coordinates $\left[x_{0}: \cdots: x_{n}\right]$. Use (a) to produce a morphism $X \rightarrow \mathbb{P}_{\mathbb{C}}^{n}=\operatorname{Proj} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ of locally ringed spaces. (Hint: apply (a) not to X itself, but to suitable open subspaces.)
(c) Repeat (b) with X being the projective n-space in the category of varieties over \mathbb{C}.

2 . Let R be a ring and let n be a positive integer.
(a) Prove that $\mathcal{O}\left(\mathbb{P}_{R}^{n}\right)=R$.
(b) Using (a), prove that \mathbb{P}_{R}^{n} is not affine.
3. Let X be a scheme and put $A=\mathcal{O}_{X}(X)$. Let $f_{1}, \ldots, f_{n} \in A$ be elements which generate the unit ideal. For $i=1, \ldots, n$, let X_{i} be the open subscheme of X consisting of those points x for which f_{i} does not belong to the maximal ideal of the local ring $\mathcal{O}_{X, x}$. Suppose that X_{i} is affine for $i=1, \ldots, n$, and put $A_{i}=\mathcal{O}_{X}\left(X_{i}\right)$.
(a) For $i, j=1, \ldots, n$, prove that the open subscheme $X_{i} \cap X_{j}$ of X is isomorphic to $\operatorname{Spec}\left(A_{i}\left[f_{j}^{-1}\right]\right)$.
(b) Prove that the natural map $A_{f_{i}} \rightarrow A_{i}$ is an isomorphism. Hint: start with the exact sequence

$$
0 \rightarrow A \rightarrow \bigoplus_{i=1}^{n} A_{i} \rightarrow \bigoplus_{i, j=1}^{n} A_{i j}
$$

for $A_{i j}=\mathcal{O}_{X}\left(X_{i} \cap X_{j}\right)$, then invert f_{i}.
(c) Prove that X is isomorphic to $\operatorname{Spec}(A)$.
4. Let M be a module over a ring R. Suppose that $f_{1}, f_{2} \in R$ generate the unit ideal. Prove that the sequence

$$
0 \rightarrow M \rightarrow M_{f_{1}} \oplus M_{f_{2}} \rightarrow M_{f_{1} f_{2}} \rightarrow 0
$$

is exact, where the map $M_{f_{1}} \oplus M_{f_{2}} \rightarrow M_{f_{1} f_{2}}$ is $(x, y) \mapsto x-y$. (Hint: we already know this if $M=R$, and by extension of M is a free module. Now use the fact that every module is a quotient of a free module.)
5. Let $S=\bigoplus_{n=0}^{\infty} S_{n}$ be a graded ring.
(a) Prove that for any $m>0$, the graded ring $S_{0} \oplus \bigoplus_{n=m}^{\infty} S_{n}$ has the same Proj as does S.
(b) Prove that for any $m>0$, the graded ring $\bigoplus_{n=0}^{\infty} S_{m n}$ has the same Proj as does S. (This has a geometric meaning which we will come back to later.)
6. Read the Wikipedia entry for "Veronese surface", then describe a morphism of graded rings corresponding to the inclusion $\mathbb{P}_{R}^{2} \rightarrow \mathbb{P}_{R}^{5}$ for R an arbitrary base ring.

