Math 203B (Algebraic Geometry), UCSD, winter 2020 Problem Set 4 (due Wednesday, February 12)

Solve the following problems, and turn in the solutions to at least *four* of them.

- 1. (a) A morphism $f: Y \to X$ of schemes is *surjective* if its underlying map $|Y| \to |X|$ of sets is surjective. Prove that this property is stable under base change.
 - (b) Take $X = Y = \operatorname{Spec} \mathbb{C}, S = \operatorname{Spec} \mathbb{R}$. Show that in this case, even though X, Y, S each consist of a single point, $X \times_S Y$ does not.
- 2. Hartshorne exercise II.3.10.
- 3. Let $f: Y \to X$ be a morphism of schemes.
 - (a) For Spec R an open affine subscheme of X, prove that the property that $Y \times_X$ Spec R is of finite type over Spec R satisfies affine communication.
 - (b) Repeat with "of finite type" replaced by "locally of finite type".
- 4. Hartshorne exercise II.5.2. This gives some examples of \mathcal{O}_X -modules on a scheme X which are not quasicoherent.
- 5. Let \mathcal{F} be a sheaf of \mathcal{O}_X -algebras on a scheme X. Prove that there exist an affine morphism $f: Y \to X$ of schemes and an isomorphism $f_*\mathcal{O}_Y \cong \mathcal{F}$ of sheaves of \mathcal{O}_X algebras. This morphism is known as the *relative Spec* of \mathcal{F} over X.
- 6. Let $f: X \to S$ be a morphism of schemes with S affine.
 - (a) Prove that if f is separated, the intersection of any two open affine subschemes of X is again affine.
 - (b) Prove that the condition of f being separated cannot be omitted from (a), using the example of two affine planes glued along the complement of a point.