1. (a) Suppose that \(f \) is affine. For \(x \in X \), we may determine \(f^{-1}(x) \) by pulling back along the canonical map \(\text{Spec} \kappa(x) \to X \). We may thus assume that \(X = \text{Spec}(k) \) for \(k \) a field. In this case, problem 8 of Math 203B PS 8 asserts that \(f \) is finite, so in particular it has finite fibers.

Suppose that \(f \) has finite fibers. For any \(x \in X \), \(f^{-1}(x) \) is a finite subset of \(\mathbb{P}^n_{\kappa(x)} \), so we can find a hypersurface in \(\mathbb{P}^n_{\kappa(x)} \) disjoint from this subset. (Proof: let \(Z \) be the reduced closed subscheme of \(\mathbb{P}^n_{\kappa(x)} \) with underlying set \(f^{-1}(x) \). For \(d \) large, \(\Gamma(\mathbb{P}^n_{\kappa(x)}, \mathcal{O}(d)) \) surjects onto \(\Gamma(Z, \mathcal{O}(d)) \cong \Gamma(Z, \mathcal{O}) \), so we may lift the constant function \(1 \in \Gamma(Z, \mathcal{O}) \) to \(\Gamma(\mathbb{P}^n_{\kappa(x)}, \mathcal{O}(d)) \). This defines a suitable hypersurface.) This lifts to a hypersurface \(H \) in \(\mathbb{P}^n_U \) for some open affine neighborhood \(U \) of \(x \) in \(X \). But \(Z = \mathbb{P}^n_U \setminus H \) is affine, so \(f|_U \) factors through a closed immersion \(Y \times_X U \to Z \). Hence \(f \) is affine.

(b) We may assume \(X = \text{Spec}(R) \) is affine. Since \(f \) is affine, \(Y = \text{Spec}(S) \) for \(S = \Gamma(Y, \mathcal{O}_Y) \cong \Gamma(X, f_*\mathcal{O}_Y) \). But since \(f \) is projective and \(X \) is noetherian, \(\Gamma(X, f_*\mathcal{O}_Y) \) is a finite \(\mathcal{O}_Y \)-module. Hence \(S \) is a finite \(R \)-algebra, proving the claim.

2. We describe two different constructions. The first construction is to recall that \(M \), being finite projective, is locally free, and that the usual trace on a square matrix is invariant under conjugation. Consequently, the local trace pieces together to give a well-defined section of the structure sheaf on \(R \), and hence an element of \(R \).

The second construction is to choose a free module \(F \) admitting a direct sum decomposition \(M \oplus N \) for some \(N \). For \(T \in \text{Hom}_R(M, M) \), we may then set \(\text{Trace}(T, M) = \text{Trace}(T \oplus 0, M \oplus N) \). To see that this does not depend on any choices, note that adding a free summand to \(N \) clearly has no effect. So if \(M \oplus N' \cong F' \) is another isomorphism, then

\[
\text{Trace}(T \oplus 0, M \oplus N) = \text{Trace}(T \oplus 0 \oplus 0 \oplus 0, M \oplus N \oplus M \oplus N') = \text{Trace}(T \oplus 0 \oplus 0 \oplus 0, M \oplus N' \oplus M \oplus N) = \text{Trace}(T \oplus 0, M \oplus N').
\]

3. Note that the universal property need only be checked in the case where \(X'_0 \) is defined by an ideal \(I \) of \(R \) with square zero.

(a) We prove locality on the target, the argument for locality on the source being similar. In one direction, if \(U \subseteq X \) is an open subscheme, then we can test the formally ramified property for \(Y \times_X U \to U \) with the original diagram, by considering only maps \(X'_0 \to Y \) factoring through \(Y \times_X U \). In the other direction, if \(\{U_i\}_{i \in I} \) is an open covering of \(X \), we can test the formally unramified property by restricting to each \(Y \times_X U_i \) and glueing maps together.
(b) By (a), both properties are local on the source and target, so we may assume that $X = \text{Spec}(R)$ and $Y = \text{Spec}(S)$ are both affine. Take $X' = \text{Spec}(R')$. For I an ideal of R' with square zero, given two R-algebra homomorphisms $f_1, f_2 : S \to R'$, we get a derivation $d : S \to I$ by mapping s to $f_1(s) - f_2(s)$. If $\Omega_{S/R} = 0$, then d must be zero, so $f_1 = f_2$ and f is formally unramified. Conversely, if $\Omega_{S/R} \neq 0$, we may take $R' = S \oplus \Omega_{S/R}$ and the two maps $s \mapsto s \oplus 0$ and $s \mapsto s \oplus ds$ to get a counterexample against the formally unramified property.

4. Locality on the target is a formal consequence of locality on the source (because open immersions are formally étale), so we focus on the latter. By affine communication, we may assume that $Y = \text{Spec}(S)$ is affine and covered by distinguished open subsets $D(g_i)$ which are formally smooth over X. Use $X'_0 \to Y$ to pull back g_i to R'/I, then lift to some $\tilde{g}_i \in R'$. As in part (b) of the previous exercise, any two liftings $X'_{\tilde{g}_i} \to Y_{g_i}$ differ by an element of $\text{Hom}_{S_{R'_i}}(\Omega_{S_{R'_i}/R_{g_i}}, I_{\tilde{g}_i})$; we thus get a 1-cocycle for the quasicoherent sheaf $\text{Hom}_{S}(\Omega_{S/R}, I)$ on the affine scheme $\text{Spec}(S)$. Therefore it is also a coboundary, and we get a global lifting.

5. Since flatness is local on the source and target, this reduces to a statement about rings: if $R \to S$ is a ring homomorphism, $R \to T$ is a faithfully flat ring homomorphism, and $T \to S \times_R T$ is flat, then $R \to S$ is flat. To check this, let $M \to N$ be an injective morphism of R-modules. Then $M \otimes_R T \to N \otimes_R T$ is injective, as then is $M \otimes_R (S \otimes_R T) \to N \otimes_R (S \otimes_R T)$. Since $R \to T$ is faithfully flat, this implies that $M \otimes_R S \to N \otimes_R S$ is flat.

6. Suppose the Jacobian condition is satisfied. It is then clear that the morphism is of finite presentation. Let R' be a local R-algebra, let I be an ideal of R' of square zero, and let $S \to R'/I$ be an R-algebra homomorphism; we must exhibit a lifted homomorphism $S \to R'$. Let $\overline{y}_1, \ldots, \overline{y}_n$ be the images of $x_1, \ldots, x_n \in R'/I$; we must lift these to $y_1, \ldots, y_n \in R'$ so that $f_i(y_1, \ldots, y_n) = 0$ for $i = 1, \ldots, m$. If we start with arbitrary lifts z_1, \ldots, z_n, instead, we must then solve the equations

$$0 = f_i(z_1 + \delta_1, \ldots, z_n + \delta_n) \quad (i = 1, \ldots, n)$$

for $i = 1, \ldots, m$ with $\delta_1, \ldots, \delta_n \in I$. But since I is of square zero,

$$0 = f_i(z_1, \ldots, z_n) + \sum_{j=1}^n \delta_j \frac{\partial f_i}{\partial x_j}(z_1, \ldots, z_n).$$

Over the residue field of R', the Jacobian criterion guarantees that we can do linear algebra to solve for the δ_j; the same is then true in R'/I because R' is a local ring. It follows that $\text{Spec}(S) \to \text{Spec}(R)$ is formally smooth.

7. The S-module $\Omega_{S/R}$ is generated by elements of the form ds with $s \in S$. However, by hypothesis each $s \in S$ has the form t^p for some $t \in S$, and $ds = pt^{p-1} dt = 0$ because S is of characteristic p.

2