Math 203C (Algebraic Geometry), UCSD, spring 2013 Solutions for problem set 7

- 1. The map $GL(m) \times_{Spec \mathbb{Z}} Z_J \to V_J$ is the multiplication map on functors of points. The map $V_J \times GL(m) \times_{Spec \mathbb{Z}} Z_J$ is defined on functors of points to send a matrix $A = (x_{ij})$ to the pair consisting of $B = (x_{i,i_\ell})$ and $B^{-1}A$.
- 2. First, note that switching two terms in either I or J negates the relation $Q_{I,J,s}$. In particular, if $x_I = 0$ or $x_J = 0$ then $Q_{I,J,s} = -Q_{I,J,s}$ and so $Q_{I,J,s} = 0$. We may thus assume $x_I, x_J \neq 0$ hereafter.

Next, note that it is enough to check that each $f^*(Q_{I,J,s})$ vanishes. Using the previous paragraph, we may reduce to the case $J = (1, \ldots, m)$.

Next, note that since $\mathbb{A}^{mn}_{\mathbb{Z}}$ is irreducible, we need only check that $f^*(Q_{I,J,s})$ vanishes on the open dense subscheme U_J .

Next, note that f is GL(m)-equivariant and $U_J \cong GL(m) \times_{Spec \mathbb{Z}} Z_J$, so it suffices to check that $f^*(Q_{I,J,s})$ vanishes on Z_J . Now we are checking the vanishing of

$$\det(x_{i,i_{\ell}}) - \sum_{t=1}^{m} f^{*}(x_{(i_{1},\dots,i_{s-1},j_{t},i_{s+1},\dots,i_{m})})x_{t,i_{s}},$$

but $f^*(x_{(i_1,\ldots,i_{s-1},j_t,i_{s+1},\ldots,i_m)})$ can be interpreted as the signed (s,t)-minor of the matrix $\det(x_{i,i_\ell})$. This proves the claim.

3. We may again assume without loss of generality that $J=(1,\ldots,m)$. In this case, the inverse map $g:G(m,n)_{x_J}\to Z_J$ may be constructed as

$$g^*(x_{hk}) = x_{(1,\dots,h-1,k,h+1,\dots,m)}/x_J.$$

It is clear (from looking at functors of points) that $g \circ f$ is the identity on Z_J . To check that $f \circ g$ is the identity, again we look at functors of points. Take R-valued points for any ring R. Given a point of $\mathbb{P}^{\binom{n}{m}-1}$ satisfying the Plücker relations, we may write x_I in terms of the $g^*(x_{hk})$ and the $x_{I'}$ where I' is obtained from I by replacing one element with an element of $\{1,\ldots,m\}$. By repeating this construction, we eventually write x_I in terms of the $g^*(x_{hk})$ and nothing else. This proves that each point satisfying the Plücker relations is uniquely determined by the $g^*(x_{hk})$, from which it follows that $f \circ g$ is the identity.

- 4. (a) It suffices to take the intersection of all closed subschemes of X through which f factors. Since X is noetherian, this ends being a finite intersection, so is again a closed subscheme.
 - (b) Since S is affine and $X \to S$ is quasicompact, X is quasicompact. We may thus cover X by finitely many open affine subschemes U_1, \ldots, U_n . Since $X \to S$ is locally of finite type, each U_i corresponds to a finitely generated algebra over the coordinate ring of S, and hence admits a closed immersion into \mathbb{A}^n_S . Embed \mathbb{A}^n_S into \mathbb{P}^n_S and then let P_i be the closed image of $U_i \to \mathbb{P}^n_S$.

- (c) If X is irreducible, we may replace X with the disjoint union of its components and build the map on top of this. So let us assume X is irreducible. Define U_1, \ldots, U_n as in (b), excluding any empty subschemes; then $U = U_1 \cap \cdots \cap U_n$ is open and nonempty, hence dense. Let X' be the closed image of $U \to X \times_S P$ for $P = P_1 \times_S \cdots \times_S P_n$. To see that this works, note first that $U \to X \times_S P$ is an open immersion, so $X' \times_X U \to U$ is an isomorphism. Then note that $X \times_S P \to P$ is the base extension of $X \to S$ and hence is proper, so $X' \to X \times_S P \to P$ is both proper and an immersion, hence a closed immersion. Since P is projective over S (via a Segre embedding), so is X'.
- 5. (a) The local ring $\mathcal{O}_{T,P}$ has fraction field K(T) and is integrally closed therein. Let R be the integral closure of $\mathcal{O}_{T,P}$ in K(C); then R is the direct sum of the local rings of C over the preimages of P. If these separate into multiple G-orbits, then summing each orbit gives a nontrivial direct sum decomposition of R into G-stable summands. The projection onto one such summand is then a G-invariant idempotent element of R other than 0 and 1, but no such element exists because R^G equals $R \cap K(T) = \mathcal{O}_{T,P}$ (because $\mathcal{O}_{T,P}$ is integrally closed in K(T)) and this ring is connected.
 - (b) Since we are in characteristic 0, we may compute ramification numbers by counting missing preimages. For each closed point P in T, the preimages of P are permuted transitively (by Galois theory), so each one makes the same contribution to the ramification number so the number of such preimages is n/s_P where s_P is the order of the stabilizer of any one point in the preimage. We then have $r_P = s_P$ and by Riemann-Hurwitz,

$$2g - 2 = n(2g(T) - 2) + \sum_{P} \left(n - \frac{n}{r_P}\right).$$

(c) Write

$$C = 2h - 2 + \sum_{i=1}^{m} \left(1 - \frac{1}{r_i}\right).$$

If $h \ge 2$, then $C \ge 2$. If h = 1, then if m = 0 we have C = 0, and if $m \ge 1$ we have $C \ge 1/2$. We may thus assume h = 0 hereafter.

If $m \le 2$, then C < 2. If $m \ge 5$, then $C \ge 5/2$. We thus need only consider the cases m = 3 and m = 4. We may assume $2 \le r_1 \le r_2 \le \cdots$.

Suppose m = 4. If $r_3 \ge 3$, then $C \ge -2 + 1/2 + 1/2 + 2/3 + 2/3 = 1/3$. The only other cases are those with $r_1 = r_2 = r_3 = 2$, in which case C = 0 for $r_4 = 2$ and $C \ge 1/6$ for $r_4 \ge 3$.

Suppose m=3. If $r_1 \geq 3$, then C=0 for $r_3=3$ and $C \geq 1/12$ for $r_3 \geq 4$. Otherwise, we have $r_1=2$. In this case:

• If $r_2 = 2$ then C < 0.

- If $r_2 = 3$, then $C \le 0$ for $r_3 \le 6$ and $C \ge 1/42$ for $r_3 \ge 7$.
- If $r_2 = 4$, then C = 0 for $r_3 = 4$ and $C \ge 1/20$ for $r_3 \ge 5$.
- If $r_2 \ge 5$, then $C \ge -2 + 1/2 + 4/5 + 4/5 = 1/10$.
- (d) Since $g \ge 2$, (2g-2)/n > 0. By (b) and (c), we must then have $(2g-2)/n \ge 1/42$, so $n \le 84(g-1)$.
- 6. (a) The map f has degree 2g − 2 = 2 (by Riemann-Roch) and is ramified at 6 points (by Riemann-Hurwitz). Let g : C → C be an automorphism fixing the 6 ramification points; it must then fix all of P¹_k since a nontrivial automorphism of P¹_k can only fix 2 points. If we write C as the curve y² = P(x) with P a rational function of degree 6, then g acts fixing x, so g is either the identity or an involution. In particular, if g is of odd order, it must be the identity.
 - (b) If the Hurwitz bound were achieved by C, then C would have a group of automorphisms of order 84 and hence an automorphism of order 7. But this automorphism would then act as a nontrivial permutation of 6 ramification points, a contradiction.
- 7. (a) The partial derivatives of $x^3y + y^3z + z^3x$ in x, y, z are respectively $3x^2y + z^3$, $3y^2z + x^3$, $3z^2x + y^3$. For these to all vanish, we must have $x^3 = -3y^2z$, $y^3 = -3z^2x$, $z^3 = -3x^2y$. Multiplying these together gives $(xyz)^3 = -27(xyz)^3$, so xyz = 0. But if any one of x, y, z vanishes then they must all do so: if for instance x = 0, then $y^3 = -3z^2x$ and $z^3 = -3x^2y$ so we must also have y = z = 0. This proves that the curve is smooth, and its genus must then be $\binom{4-1}{2} = 3$.
 - (b) For ζ_7 a primitive 7-th root of unity, take

$$[x:y:z] \mapsto [\zeta_7 x:\zeta_7^4 y:\zeta_7^2 z].$$

To get divisibility by 3, we exhibit an automorphism of order 3:

$$[x:y:z] \mapsto [y:z:x].$$

- (c) Let G be the group of automorphisms of C. By (b) and our assumptions, G has order divisible by 2^3 , 3, and 7, and hence by 168 = 84(g-1). Hence we must have equality in the Hurwitz bound.
- 8. The partial derivatives of $y^{q+1} zx^q z^qx$ in x, y, z are respectively $-z^q, y^q, -x^q$, which have no common zero. Hence this curve is smooth, so its genus is $\binom{q+1-1}{2} = q(q-1)/2$. Meanwhile, the curve has automorphisms by the additive group \mathbb{F}_q via

$$[x:y:z] \mapsto [x+cz:y:z] \qquad (c \in \mathbb{F}_q)$$

and by the group of (q+1)-st roots of unity in k via

$$[x:y:z]\mapsto [x:cy:z] \qquad (c\in k, c^{q+1}=1).$$

These together form a group of order q(q+1), which is not yet enough to get the contradiction. However, we can do better: for $c \in \mathbb{F}_{q^2}^*$, we have automorphisms

$$[x:y:z] \mapsto [c^{q+1}x:cy:z].$$

Now we get a group of order $q(q^2-1)$, which is bigger than 84(g-1)q(q-1)/2 for q sufficiently large.