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Math 203C (Algebraic Geometry), UCSD, spring 2013
Solutions for problem set 7

The map GL(m) Xgspecz Z; — Vj is the multiplication map on functors of points. The
map V; X GL(m) Xgpecz Z is defined on functors of points to send a matrix A = (z;;)
to the pair consisting of B = (z;;,) and B~ A.

First, note that switching two terms in either I or J negates the relation Q7 js. In
particular, if z; = 0 or ; = 0 then Q5 = —Q1,s and so Q7 ;s = 0. We may thus
assume zy, x; # 0 hereafter.

Next, note that it is enough to check that each f*(Q; ) vanishes. Using the previous
paragraph, we may reduce to the case J = (1,...,m).

Next, note that since A7 is irreducible, we need only check that f*(Q;.s) vanishes
on the open dense subscheme U;.

Next, note that f is GL(m)-equivariant and U; = GL(m) Xgpecz £, so it suffices to
check that f*(Qr.s) vanishes on Z;. Now we are checking the vanishing of

m

det(i4,) = D F (@01 v dosiesrromsion) ) Ttiis

t=1

but f*(2(iy,...is_1.jesiesr,.im)) CaN be interpreted as the signed (s, t)-minor of the matrix
det(z;;,). This proves the claim.

. We may again assume without loss of generality that J = (1,...,m). In this case, the

inverse map g : G(m,n),, — Z; may be constructed as

G (Thk) = T, b1k bt 1, m) /T

It is clear (from looking at functors of points) that go f is the identity on Z;. To check
that f o g is the identity, again we look at functors of points. Take R-valued points
for any ring R. Given a point of pln)- satisfying the Pliicker relations, we may write
xy in terms of the ¢g*(xp,) and the xp where I’ is obtained from I by replacing one
element with an element of {1,...,m}. By repeating this construction, we eventually
write 7 in terms of the g*(zx) and nothing else. This proves that each point satisfying
the Pliicker relations is uniquely determined by the g*(xp), from which it follows that
f o g is the identity.

(a) It suffices to take the intersection of all closed subschemes of X through which f
factors. Since X is noetherian, this ends being a finite intersection, so is again a
closed subscheme.

(b) Since S is affine and X — S is quasicompact, X is quasicompact. We may thus
cover X by finitely many open affine subschemes Uy,...,U,. Since X — S is
locally of finite type, each U; corresponds to a finitely generated algebra over the
coordinate ring of S, and hence admits a closed immersion into A%. Embed A%
into P4 and then let P; be the closed image of U; — P%.
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If X is irreducible, we may replace X with the disjoint union of its components
and build the map on top of this. So let us assume X is irreducible. Define
Uy, ..., U, as in (b), excluding any empty subschemes; then U = Uy N ---NU, is
open and nonempty, hence dense. Let X’ be the closed image of U — X x g P for
P =Py xg---xgP,. To see that this works, note first that U — X x g P is an open
immersion, so X’ x x U — U is an isomorphism. Then note that X xg P — P is
the base extension of X — S and hence is proper, so X’ — X xg P — P is both
proper and an immersion, hence a closed immersion. Since P is projective over S
(via a Segre embedding), so is X'.

The local ring Or p has fraction field K (7') and is integrally closed therein. Let
R be the integral closure of O p in K(C'); then R is the direct sum of the local
rings of C' over the preimages of P. If these separate into multiple G-orbits, then
summing each orbit gives a nontrivial direct sum decomposition of R into G-
stable summands. The projection onto one such summand is then a G-invariant
idempotent element of R other than 0 and 1, but no such element exists because
R% equals RNK(T) = Orp (because Or p is integrally closed in K (7)) and this
ring is connected.

Since we are in characteristic 0, we may compute ramification numbers by count-
ing missing preimages. For each closed point P in T, the preimages of P are
permuted transitively (by Galois theory), so each one makes the same contribu-
tion to the ramification number so the number of such preimages is n/sp where
sp is the order of the stabilizer of any one point in the preimage. We then have
rp = sp and by Riemann-Hurwitz,

2g—2=n(zg(T)—2)+ZP:(n—%).

Write
= 1
C=2h—2 1——.
3 (-5)

If h > 2, then C' > 2. If h =1, then if m = 0 we have C = 0, and if m > 1 we
have C' > 1/2. We may thus assume h = 0 hereafter.

If m <2, then C' < 2. If m > 5, then C' > 5/2. We thus need only consider the
cases m = 3 and m = 4. We may assume 2 <1y <7y < ---.

Suppose m = 4. If r3 > 3, then C' > —2+4+1/2+1/2+4+2/3+2/3 = 1/3. The only
other cases are those with r1 = ro = r3 = 2, in which case C' = 0 for 4 = 2 and
C' >1/6 for ry > 3.

Suppose m = 3. If r; > 3, then C' = 0 for r3 = 3 and C > 1/12 for r3 > 4.
Otherwise, we have r; = 2. In this case:

e If r, =2 then C' < 0.
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e If 5, =3, then C <0 for r3 <6 and C' > 1/42 for r3 > 7.
o If ro =4, then C' =0 for r3 =4 and C' > 1/20 for r3 > 5.
o Ifry > 5, then €' > —2+1/2+4/5+4/5 = 1/10.

Since g > 2, (29—2)/n > 0. By (b) and (c), we must then have (2g9—2)/n > 1/42,
son < 84(g—1).

The map f has degree 29 — 2 = 2 (by Riemann-Roch) and is ramified at 6
points (by Riemann-Hurwitz). Let g : C' — C be an automorphism fixing the
6 ramification points; it must then fix all of P} since a nontrivial automorphism
of P} can only fix 2 points. If we write C' as the curve y*> = P(x) with P a
rational function of degree 6, then ¢ acts fixing z, so ¢ is either the identity or an
involution. In particular, if ¢ is of odd order, it must be the identity.

If the Hurwitz bound were achieved by C', then C' would have a group of automor-
phisms of order 84 and hence an automorphism of order 7. But this automorphism
would then act as a nontrivial permutation of 6 ramification points, a contradic-
tion.

The partial derivatives of 23y +y3z+ 23z in x, y, 2 are respectively 3z%y+23, 3y? 2+
23,322 +y3. For these to all vanish, we must have 2° = —3y?z, 9% = —32%z, 23 =
—3x2y. Multiplying these together gives (zyz)? = —27(xyz)3, so ryz = 0. But if
any one of x,y, z vanishes then they must all do so: if for instance x = 0, then
y? = —32%z and z* = —32%y so we must also have y = z = 0. This proves that

the curve is smooth, and its genus must then be (4;1) =3.

For (; a primitive 7-th root of unity, take
[z:y: 2] (G Gy Gzl
To get divisibility by 3, we exhibit an automorphism of order 3:
[x:y:zl—=ly:z:x]

Let G be the group of automorphisms of C'. By (b) and our assumptions, G' has
order divisible by 23, 3, and 7, and hence by 168 = 84(g — 1). Hence we must
have equality in the Hurwitz bound.

8. The partial derivatives of 97! — 229 — 292 in x, y, 2 are respectively —z9, y4, —x4, which
have no common zero. Hence this curve is smooth, so its genus is (‘”;_1) =q(qg—1)/2.
Meanwhile, the curve has automorphisms by the additive group F, via

[z y:z]—=[r4+cziy: 2] (ceFy)

and by the group of (¢ + 1)-st roots of unity in k via

[w:y:z]—=[r:cy: 2] (c€k, it =1).
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These together form a group of order ¢(q + 1), which is not yet enough to get the
contradiction. However, we can do better: for ¢ € F},, we have automorphisms

[z:y:z] = [c2:cy: 2]

Now we get a group of order g(¢? — 1), which is bigger than 84(g — 1)q(q — 1)/2 for q
sufficiently large.



