
Math 203C (Algebraic Geometry), UCSD, spring 2013
Notes on smooth morphisms

Although I originally introduced the Stacks Project definition of smoothness, I’m now
going to use the EGA definitions as introduced on PS 1 and leave the proof of their equiv-
alence to the Stacks Project. (The precise EGA reference is EGA 4 section 17, but you
shouldn’t need to refer to this anytime soon.)

Let f : Y → X be a morphism of schemes. We say f is formally smooth/unramified/étale
if for every affine scheme X ′ = Spec(R) and every closed subscheme X ′

0 of X defined by a
nilpotent ideal of R, every diagram

X ′
0

//

��

Y

��
X ′ //

>>

X

admits at least/at most/exactly one extension by a dashed arrow. We say that the morphism
f is smooth/unramified/étale if f is formally smooth/unramified/étale and locally of finite
presentation.

Lemma 1. All of these properties are local on the source and on the target.

Proof. Homework.

Lemma 2. The morphism f is formally unramified if and only if ΩY/X = 0.

Proof. Homework.

Lemma 3. Let R→ S be a formally smooth morphism of rings. Let I be an ideal of S such
that R→ T = S/I is also formally smooth. Then I/I2 is a projective T -module.

Proof. Because R→ T is formally smooth, the isomorphism T → S/I factors through S/I2;
that is, the exact sequence

0→ I/I2 → S/I2 → T → 0

of R-modules is split.
To check projectivity, we must show that for any surjection P → Q of T -modules, any

morphism I/I2 → Q factors through P . First, push out the previous exact sequence along
I/I2 → Q to obtain another exact sequence

0→ Q→ E → T → 0

of R-modules which is again split by a ring homomorphism T → E. Then use P → Q to
make a surjection T ⊕P → T ⊕Q ∼= E. The kernel of T ⊕P → E is contained in P , and so
has square zero. Since R → S is formally smooth, we may factor S → S/I2 → E through
S → T ⊕ P . This map kills I2 and so induces a map S/I2 → T ⊕ P . The image of I/I2

under this map lands in P , giving a map I/I2 → P ; this proves projectivity. (Argument
taken from EGA 4, 0.19.5.3).

1



Lemma 4. If f : Spec(S) → Spec(R) is a formally smooth morphism of affine schemes,
then ΩS/R is a projective S-module.

Proof. If R→ S is formally smooth, then so are S → S ⊗R S and R→ S → S ⊗R S. Let I
be the kernel of S ⊗R S → S; by (b), I/I2 ∼= ΩS/R is a projective S-module.

The converse is not true; see homework. In the smooth case, we get a converse by also
keeping track of dimensions.

Lemma 5. Let k be a field and let k → S be a morphism of finite type (equivalently of finite
presentation since k is noetherian). Then the following are equivalent.

(a) The morphism k → S is (formally) unramified.

(b) The morphism k → S is (formally) étale.

(c) The ring S is a direct sum of finitely many finite separable field extensions of k.

Proof. Homework.

This means for instance that the purely inseparable field extension Fp(x
p)→ Fp(x) is not

formally unramified, that is, ΩFp(xp)/Fp(x) 6= 0. See homework for the explicit computation.
We say that a ring homomorphism R→ S satisfies the Jacobian criterion at p ∈ Spec(S)

if there exists a surjection R[x1, . . . , xn] → S with kernel I such that Ip admits generators
(f1, . . . , fm) such that the Jacobian matrix

J =

(
∂fi
∂xj

)
over κ(p) has rank n−m (i.e., the m×m subdeterminants generate the unit ideal).

Lemma 6. Let R be a local ring. Then a finitely presented morphism R → S is smooth if
and only if Spec(S) satisfies the Jacobian criterion at each point.

Proof. It was proven on homework that if R → S satisfies the Jacobian criterion, then it
is smooth (this argument can be thought of an algebro-geometric analogue of the implicit
function theorem). In the opposite direction, we will prove in fact that every presentation
S ∼= R[x1, . . . , xn]/I has the desired property. Put P = R[x1, . . . , xn]. Then the map

I → P → ΩP/R

induces a map
I/I2 → ΩP/R ⊗P S.

We check that this map is injective by producing a left inverse ΩP/R ⊗P S → I/I2. The
data of this map is that of a map ΩP/R → I/I2 of P -modules, or equivalently an R-linear
derivation P → I/I2 or automatically P/I2 → I/I2.

2



Since R→ S is formally smooth, the sequence

0→ I/I2 → P/I2 → S → 0

admits an R-algebra splitting S → P/I2 and hence an R-algebra isomorphism P/I2 ∼=
S⊕ I/I2. Using the P -algebra multiplication, we get an R-linear derivation P/I2 → I/I2 of
the desired form.

To sum up, I/I2 → ΩP/R ⊗P S is injective. Consequently, we may take f1, . . . , fm to be
elements of I lifting a basis of I/I2 ⊗P κ(p).

Lemma 7. Let R→ S be a smooth morphism of rings. Then R→ S is also flat.

Proof. We may assume R is a local ring. By Lemma 6, S satisfies the Jacobian criterion at
each point. In particular, S is locally the quotient of R[x1, . . . , xn] by a regular sequence.
To deduce flatness from this, we may reduce to the case where R is noetherian (because R
is the union of its Z-finitely generated subrings and R → S can be realized over some such
subring). Since R[x1, . . . , xn] is flat over R, we may proceed by induction using the following
fact: if A is a local ring with residue field k, u : M → N is a homomorphism of A-modules,
N is flat, and u⊗A k is injective, then coker(u) is flat. (Namely, N is flat iff Tor1(N, k) = 0,
and use the long exact sequence for Tor.)

Lemma 8. A morphism is étale if and only if it is flat and unramified.

Proof. If a morphism is étale, it is smooth and unramified, and hence étale by Lemma 7.
For the other implication, see homework.
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