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Analytification and GAGA

1 Analytification (after SGA 1)

Recall that the category of locally ringed spaces includes both schemes and complex analytic
spaces. The latter are characterized as spaces which locally admit a closed immersion into
some open subspace in some Cn, with the latter carrying the usual topology and the sheaf
of holomorphic functions. Implicit in this construction is the following fact, which I will not
prove here (it depends on the Weierstrass preparation theorem).

Theorem 1. Let D denote the closed unit disc in C. Let R be the stalk of the structure
sheaf of Cn at Dn, i.e., the direct limit of Γ(U,O) over neighborhoods U of Dn in Cn. (Note
that R may be identified with the subring of CJz1, . . . , znK consisting of series converging on
some open polydisc of radii strictly greater than 1.) Then the ring R is noetherian.

This means that locally, any closed immersion into the analytic space Cn is locally defined
by a finitely generated ideal. It also makes it sense to talk about coherent sheaves on complex
analytic spaces.

We would like to construct a functor from schemes locally of finite type over C to complex
analytic spaces that takes An

C to Cn. To do this, we will take advantage of the fact that both
types of objects belong to the same ambient category.

Let X be a scheme locally of finite type over C. By an analytification of X, we will mean
a complex analytic space Xan equipped with a morphism Xan → X satisfying the following
universal property: for every complex analytic space Y , every morphism Y → X of locally
ringed spaces factors uniquely through Xan (in the category of locally ringed spaces, or
equivalently in the category of complex analytic spaces). As usual, since this construction is
defined from a universal property, an analytification is unique up to unique isomorphism if
it exists.

For example, take X = An
C. We claim that Xan = Cn has the desired property. The

map Cn → X arises by adjunction from the map from C[z1, . . . , zn] to the ring of entire
power series in z1, . . . , zn. For any morphism Y → X of locally ringed spaces in which
Y is a complex analytic space, we can pull back z1, . . . , zn to elements of Γ(Y,O), and we
must check that any entire power series in these elements converges in Γ(Y,O). For this,
we may reduce to the case where Y admits a closed immersion into some polydisc; we may
then lift z1, . . . , zn to sections on that polydisc. We are thus reduced to an elementary
exercise in complex analysis (proof omitted): if z1, . . . , zn are power series in some variables
y1, . . . , ym which converge on the polydisc |y1|, . . . , |ym| < 1, then any entire power series∑
ci1,...,inz

i1
1 . . . z

in
n evaluates to a power series in y1, . . . , ym convergent on the unit polydisc.

More generally, if X is affine of finite type over C, then it admits a closed immersion
j : X → An

C. If Y → X is a morphism of locally ringed spaces with Y a complex analytic
space, then we may compose to get a map Y → An

C which then gives rise to a morphism
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f : Y → Cn. The kernel of the induced map OCn → f∗OY includes the inverse image ideal
sheaf (from An

C to Cn) of the kernel of OAn
C
→ j∗OX ; but this gives us a candidate for Xan,

namely the closed immersion into Cn defined by this inverse image. In fact, I can replace
“inverse image” with “pullback” because of the following fact.

Theorem 2. The map Cn → An
C of locally ringed spaces is flat. That is, for each y ∈ Cn

mapping to x ∈ An
C, the ring homomorphism OAn

C ,x
→ OCn,y is flat.

Proof. This is obvious for n = 1. The general case will be treated in an exercise.

Since analytifications are unique up to unique isomorphism, we can then glue to obtain
analytifications of any scheme X locally of finite type over C. Note that the map Xan → X
will again be flat, by base change from the case of affine space: for any closed immersion
Y → X of schemes we have

Y an ∼= Y ×X Xan

as a fiber product in the category of locally ringed spaces.
Aside: over a nonarchimedean complete field such as Qp, once one has in hand a suit-

able definition of analytic spaces over that field, one can similarly define analytifications of
schemes locally of finite type over the field. However, there are several approaches to analytic
geometry over a nonarchimedean field: Tate’s rigid analytic spaces (equivalently, Raynaud’s
theory of formal schemes modulo admissible blowups), Berkovich’s nonarchimedean analytic
spaces, Huber’s adic spaces...

2 Statement of the GAGA theorems

Suppose now that X is projective over C. Then Serre proved the following statements about
the relationship between X and its analytification. (As explained by Grothendieck in SGA1,
one can promote these results to proper varieties over C using Chow’s lemma, but we’ll skip
this refinement in the present discussion.)

Theorem 3 (GAGA). Let X be a projective scheme over C. Let ι : Xan → X be the
analytification morphism.

(a) The pullback functor from coherent sheaves on X to coherent sheaves on Xan is an
equivalence of categories.

(b) For every coherent sheaf F on X and every i ≥ 0, the natural map H i(X,F) →
H i(Xan, ι∗F) is an isomorphism.

This statement has various geometric corollaries, notably the following.

Corollary 4. Let X be a projective scheme over C. Then every closed immersion into Xan

arises from a closed immersion into X. For example, every analytic hypersurface in the
complex-analytic projective n-space over C is in fact algebraic.

Proof. For j : Y → Xan a closed immersion, apply GAGA to lift ker(OXan → j∗OY ) to an
ideal subsheaf of OX .

2



3 Comparison of cohomology

We now sketch the proof of part (b) of the GAGA theorem. This follows the same general
paradigm we have used to study sheaf cohomology, except that we need to draw on a couple
of statements about complex analytic spaces which we will not take the time to prepare.

To begin with, note that as usual, we may replace a sheaf F on X with its pushforward
along a closed immersion into a projective space. We may thus assume that X = Pn

C for
some n.

Let’s next treat the case where F = O.
Input from complex analysis: by Liouville’s theorem, the only bounded entire func-

tions on C are the constants.
Using this input, we see that any bounded entire function on Cn is constant. In particular,

H0(Xan,O) = C = H0(X,O).
Input from complex analysis: let U ⊂ Cn be an open set which is the product of

open discs. Then H i(U,O) = 0 for all i > 0. (This follows from a theorem of Cartan on
Stein spaces.) The same then holds for U = Cn by taking direct limits.

This lets us Čech cohomology to compute H i(Xan,O) using the same cover that we use
in algebraic geometry, and thus deduce that H i(Xan,O) = 0 = H i(X,O) for all i > 0.

Let’s next treat the case where F = O(m) for some m ∈ Z, by induction on n. Take
n = 0 as the trivial base case. Let H ⊂ X be the hyperplane at infinity and let j : H → X
be the canonical inclusion; there is then an exact sequence

0→ OX(m− 1)→ OX(m)→ j∗OH(m)→ 0.

For any given n, if we assume the claim for H (for all m), comparing long exact sequences in
cohomology allows us to take the claim for X and extend it from a given m to either m+ 1
or m− 1. Since we start with the single value m = 0 for which we do know the claim for X,
we get it for all m.

Finally, we treat arbitrary F by dimension shifting, namely, we proceed by descending
induction on i. Let’s start with the base case i > n, for which we have H i(X,F) = 0 and
so want the same for H i(Xan,F). We already know this if F is a direct sum of O(m)’s. We
might try to then use an exact sequence of the form

0→ G → E → F → 0

where E is such a direct sum, but this is not apparently useful: we end up comparing
H i(Xan, ι∗F) to H i+1(Xan, ι∗G), which again we know nothing about. The trick is that this
doesn’t last forever! If we form a projective resolution

· · · → E1 → E0 → F → 0,

then the Hilbert syzygy theorem can be used to truncate this sequence by replacing En with
a direct summand, for which we also have the vanishing of H i for i > n. This doesn’t quite
give the base case we were originally looking for, but it does at least give vanishing for i > 2n.
All that really matters is that this bound is independent of F .
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Now to descend further, again cover F with a sheaf E which is a direct sum of various
O(m), and then take apply cohomology to

0→ G → E → F → 0

to deduce vanishing of H i(Xan, ι∗F) from vanishing of H i+1(Xan, ι∗G).

4 Full faithfulness

Let us now start working on part (a) of the GAGA theorem. We will further break this up
into two statements:

(i) The pullback functor is fully faithful : for any two coherent sheaves F ,G on X, the
map Hom(F ,G) → Hom(i∗F , i∗G) is bijective. (This is itself really two statements;
the map is injective, and it is surjective.)

(ii) The pullback functor is essentially surjective: every coherent sheaf onXan is isomorphic
to the pullback of some coherent sheaf on X.

We will work on full faithfulness first, since it requires less analytic input. In fact, it is
an easy consequence of the comparison of cohomology (which is why we did that first).

The first point is that Hom(F ,G) can be interpreted as the global sections of the sheaf
Hom, i.e., the sheaf E for which

E(U) = HomO(U)(F(U),G(U)).

Moreover, forming the sheaf Hom commutes with analytification (because the analytification
morphism is flat). So full faithfulness reduces to the fact that analytification preserves global
sections, which is the case i = 0 of part (b). (Note also that again, even if we care only
about global sections, we need to control higher cohomology to get access to them!)

5 Essential surjectivity

To finish proving part (a) of the GAGA theorem, we need to establish that any coherent
sheaf on Xan is the pullback of a coherent sheaf on X. Again, we may assume X = Pn

C. We
will proceed by induction on n, using n = 0 as a trivial base case.

To prove the claim for a given n, it would be enough to establish the analogue of Serre’s
theorem about generation: for every coherent sheaf F on Xan, there exists m0 ≥ 0 such that
for every m ≥ m0 (or even just for m = m0), the sheaf F(m) is generated by finitely many
global sections. Namely, we then have a surjection ι∗E0 → F , and apply the same argument
to the kernel of this map to get an exact sequence

ι∗E1 → ι∗E0 → F → 0

4



where E0, E1 are coherent sheaves on Xan. By full faithfulness, the morphism ι∗E1 → ι∗E0 is
the pullback of a morphism E1 → E0, and now F = ι∗ coker(E1 → E0) by the right exactness
of pullback.

So now we are trying to generate F(m) by finitely many global sections. In fact, we
don’t need to worry about the “finitely many” part: if we get enough sections to generate
the stalk at one point, then we also generate in a neighborhood by Nakayama’s lemma, and
the compactness of Xan does the job. By the same token, we need only generate the fiber at
one point, not even the stalk.

Let’s then work locally around a single point y ∈ Xan, which corresponds to a closed
point x ∈ X. Draw a hyperplane H through x and let j : H → X be the closed immersion.
As usual, we have an exact sequence

0→ OX(m− 1)→ OX(m)→ j∗OH(m)→ 0

and likewise after pullback along ι. Tensoring with F doesn’t preserve exactness at the left.
Let G be the kernel of F(−1)→ F , so that we have an exact sequence

0→ G(m)→ F(m− 1)→ F(m)→ j∗j
∗F(m)→ 0.

This splits into two short exact sequences:

0→ G(m)→ F(m− 1)→ H→ 0

0→ H→ F(m)→ j∗j
∗F(m)→ 0.

We then get long exact sequences:

H1(Xan,F(m− 1))→ H1(Xan,H)→ H2(Xan,G(m))

H1(Xan,H)→ H1(Xan,F(m))→ H1(Xan, j∗j
∗F(m)).

Note that both j∗j
∗F(m) and G(m) are actually pullbacks of coherent sheaves on Han, so by

the induction hypothesis we know they arise by pullback from H. We may thus apply part
(b) of the GAGA theorem to deduce that H2(Xan,G(m)) = H1(Xan, j∗j

∗F(m)) = 0 for m
large. We now bring in one last piece of complex analysis, a theorem of Cartan (more on
which if we have time).

Input from complex analysis: For any coherent sheaf F on Xan and any i ≥ 0,
H i(Xan,F) is a finite-dimensional C-vector space.

From this, we see that

dimCH
1(Xan,F(m− 1)) ≥ dimCH

1(Xan,H) ≥ dimC(Xan,F(m)).

That is, as m increases, the dimensions dimCH
1(Xan,F(m)) form a monotone nonincreasing

sequence of nonnegative integers. Consequently, this sequence must stabilize at some value
(which we know a posteriori will have to be 0, but we can’t prove that just yet). Once we
hit the stable value, we know for sure that

dimCH
1(Xan,F(m− 1)) = dimCH

1(Xan,H) = dimC(Xan,F(m)),
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so if we back up one of those long exact sequences, we see that for m large,

H0(Xan,F(m))→ H0(Xan, j∗j
∗F(m))→ 0

is exact. By the induction hypothesis, for m large, j∗j
∗F(m) is generated by global sections,

and hence it’s also generated by the restrictions of global sections of F(m). This means in
particular that the fiber of F(m) at x is generated by global sections for m large, and as
noted earlier this suffices.
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