Math 203C (Algebraic Geometry), UCSD, spring 2016 Problem Set 2 (due Wednesday, April 20 by 5pm)

Solve the following problems, and turn in the solutions to four of them.

- 1. Let X be a smooth, projective, irreducible curve over an algebraically closed field. Prove that a line bundle \mathcal{L} on X is ample if and only if $\deg(\mathcal{L}) > 0$.
- 2. Let X be a closed subscheme of \mathbb{P}_k^d for some field k.
 - (a) Prove that a line bundle \mathcal{L} on X is ample if and only if for each $m \in \mathbb{Z}$, there exists $n_0 \in \mathbb{Z}$ such that for all $n \geq n_0$, $\mathcal{L}^{\otimes n}(m)$ is generated by global sections. (Note that m stays fixed while n moves!)
 - (b) Using (a), prove that if \mathcal{L} is an ample line bundle on X, then its pullback to any closed subscheme of X is again ample. (Note that this is not immediately obvious from the definition of ampleness.)
- 3. Let X be a noetherian scheme, let U be an open subset, and let \mathcal{F} be a coherent sheaf on U. Prove that \mathcal{F} is the restriction of some (nonunique) coherent sheaf on X. See Hartshorne, Exercise 5.15 for the steps.
- 4. Let k be a field. Compare the blowups of \mathbb{A}^2_k at the following ideals:

$$(x,y),$$
 $(x^2,y),$ $(x,y^2),$ $(x^2,y^2),$ (x^2,xy,y^2)

to see which ones are isomorphic.

- 5. Let k be an algebraically closed field. Prove that the blowup of a smooth variety over k along a smooth subvariety is again smooth.
- 6. Let k be an algebraically closed field. Show that the blowup of \mathbb{A}^2_k along the singular cubic curve $y^2 = x^3 x^2$ is not smooth.
- 7. Do Hartshorne exercise II.7.12.