Math 204A (Number Theory), UCSD, fall 2020 Notes on algebraic numbers and algebraic integers

An algebraic number is an element $\alpha \in \mathbb{C}$ for which there exists a nonzero polynomial $P(x) \in \mathbb{Q}[x]$ such that $P(\alpha) = 0$.

A number field is a subfield of \mathbb{C} which is finite-dimensional as a \mathbb{Q} -vector space.¹

- Any finite set of algebraic numbers is contained in some number field.
- Conversely, an element $\alpha \in \mathbb{C}$ is an algebraic number if and only if $1, \alpha, \alpha^2, \ldots$ all belong to some finite-dimensional \mathbb{Q} -vector subspace of \mathbb{C} . (Hint: any linear dependence relation gives rise to a polynomial with α as a root.)
- The set *Q* of algebraic integers is a subfield of *C*. That is, *Q* is closed under addition, subtraction, multiplication, and division. (This follows from the previous statements.)
- For any algebraic number α , there is a unique monic (leading coefficient 1) polynomial $P(x) \in \mathbb{Q}[x]$ of minimal degree such that $P(\alpha) = 0$. It is called the *minimal polynomial* of α . (Hint: the set of polynomials which vanish on α is a nonzero ideal of $\mathbb{Q}[x]$. Use Euclidean division to show that this ideal is principal.)
- If $\alpha \in \mathbb{C}$ is a root of a nonzero polynomial $P(x) \in \overline{\mathbb{Q}}[x]$, then $\alpha \in \overline{\mathbb{Q}}$. (Hint: first put all of the coefficients of P into a number field.)
- The set $\overline{\mathbb{Q}}$ is countable; that is, it can be put into bijection with \mathbb{Z} , but not with \mathbb{R} or \mathbb{C} .

An algebraic integer is an element $\alpha \in \mathbb{C}$ for which there exists a monic polynomial $P(x) \in \mathbb{Z}[x]$ such that $P(\alpha) = 0$.

- Any α ∈ Q is an algebraic number. It is an algebraic integer if and only if it is in Z. (Hint: use the rational root theorem. This is a special case of Gauss's lemma; see below.) We will sometimes use the term² rational integer to refer to elements of Z.
- For any algebraic number α , α is an algebraic integer if and only if its minimal polynomial belongs to $\mathbb{Z}[x]$. (Hint: use Gauss's lemma on the content of polynomials.)
- For any algebraic number α , α is an algebraic integer if and only if $1, \alpha, \alpha^2, \ldots$ all belong to a finitely generated \mathbb{Z} -submodule of \mathbb{C} . (Hint: if there is such a submodule, then the submodules generated by $1, \alpha, \ldots, \alpha^n$ for successive values of n must eventually stabilize.)

¹More accurately, a number field is an *abstract* field of characteristic 0 which is finite-dimensional as a \mathbb{Q} -vector space. What I just defined should really be called an *embedded* number field; we'll come back to this in a few lectures.

²This linguistic construction is an example of a *retronym*.

- The set *Z* of algebraic integers is a subring of *C*. That is, *Z* is closed under addition, subtraction, and multiplication, but not division.
- If $\alpha \in \mathbb{C}$ is a root of a nonzero monic polynomial $P(x) \in \overline{\mathbb{Z}}[x]$, then $\alpha \in \overline{\mathbb{Z}}$.