## Math 204A (Number Theory), UCSD, fall 2020 <br> Notes on extension of valuations

Let $K$ be a field complete with respect to a nontrivial multiplicative valuation (absolute value) denoted $|\cdot|_{K}$. Let $L$ be a finite extension of $K$. In these notes, we construct a multiplicative valuation on $L$ extending the one on $K$ without separating into archimedean and nonarchimedean cases. This uses some ideas borrowed from functional analysis.

Let $S$ be the set of functions $|\cdot|: L \rightarrow \mathbb{R}_{\geq 0}$ such that for all $x, y \in L$,
(a) $|0|=0,|1| \geq 1$;
(b) $|x+y| \leq|x|+|y|$;
(c) $|x y| \leq|x||y|$;
(d) $|x y|=|x||y|_{K}$ when $y \in K$.

This set is nonzero because I can construct such a function by taking the supremum norm with respect to some $K$-basis. (The third condition will initially come out as $|x y| \leq c|x||y|$ for some fixed $c>0$, but we can rescale to ensure that $c=1$ works.)

Using Zorn's lemma, we can choose a minimal function in $S$; we claim this will be an absolute value.

Lemma 1. For every positive integer $n,\left|x^{n}\right|=|x|^{n}$ for all $x \in L$.
Proof. It will be enough to check that the function $x \mapsto\left|x^{n}\right|^{1 / n}$ also belongs to $S$, as then the minimality of $|\cdot|$ will force the issue (because (c) ensures that $\left|x^{n}\right|^{1 / n} \leq|x|$ ). Properties (a), (c), (d) are directly inherited from $|\cdot|$. As for (b), write

$$
\left|(x+y)^{n}\right| \leq \sum_{i=0}^{n}\binom{n}{i}|x|^{i}|y|^{n-i}=(|x|+|y|)^{n}
$$

Lemma 2. For all $x \in L^{\times},|x|\left|x^{-1}\right|=1$.
Proof. By (a) and (c), we have $|x|\left|x^{-1}\right| \geq 1$, so it suffices to obtain a contradiction under the assumption that $|x|\left|x^{-1}\right|>1$. In this case, we can choose $\rho$ with $\left|x^{-1}\right|^{-1}<\rho<|x|$. Let $R$ be the ring of power series $\sum_{n=0}^{\infty} a_{n} T^{n}$ over $K$ for which $\left|a_{n}\right| \rho^{n} \rightarrow 0$ as $n \rightarrow \infty$; since $K$ is complete, $R$ is a commutative Banach algebra over $K$ for the submultiplicative norm

$$
\left|\sum_{n} a_{n} T^{n}\right| \mapsto \sup _{n}\left\{\left|a_{n}\right| \rho^{n}\right\} .
$$

Using the fact that the geometric series $1 /(1-y)$ converges for $y \in R$ sufficiently small, we see that the set of units of $R$ is open in $R$.

By expanding out $\left(1-x^{-1} T\right)^{-1}$ and using Lemma 1 , we see that $T-x$ is not a unit in $R$. Since the units in $R$ are open, it follows that the closure of the ideal $T-x$ is not the unit
ideal, so the quotient of $R$ by this closure is a nonzero Banach ring for the quotient norm. (The quotient norm of a residue class is the infimum of the norms of its representatives.) If we restrict the quotient norm back to $K$, we get a function which again belongs to $S$ and is bounded above by $|\cdot|$, but its value on $x$ is at most $\rho$; this contradicts the minimality of |- $\mid$.

Lemma 3. The function $|\cdot|$ is a multiplicative valuation extending $K$.
Proof. The fact that $|\cdot|$ belongs to $S$ implies everything except multiplicativity. For this, use Lemma 2 to write

$$
|x y| \leq|x||y| \leq|x|\left|x^{-1}\right||x y|=|x y| .
$$

