Ideals and factorization in number fields

Happy Indigenous Peoples' Day!

Note: the video from October 9 got corrupted while I was trying to post it, so there is a segment missing in the middle. I recorded a supplemental video to cover the gap.

The 2020 election is open until November 1, 2020.

The trace of an algebraic integer
Reminder for L/K finite field extension $T_{\text {race }}^{L, K}: L \rightarrow K \quad \operatorname{Trace}_{L / K}(X)=\operatorname{Trace}\left(T_{X}:\right.$ what if $K=Q, x \in Q_{L}$?
The $\operatorname{Trace}_{L K}(x) \in Q \bar{\cap}=2$.

The trace pairing L/K frite trieldextersion For $x, y \in L$, detine $\langle x, y\rangle=\operatorname{Trace}_{4 / K}(x y)$ $K-b i l i n e r \operatorname{mop} L K L \rightarrow K$
prop if L/k $1+$ sepralle (and $\alpha_{1} \ldots \alpha_{n}$ is a basis of L / K) then $\langle x, y\rangle$ is (pcriectsgenente; ie. $L \underset{\langle\rightarrow T}{\longrightarrow} \stackrel{L}{2}^{2}=\operatorname{Homkc}(\zeta k)$
If: wnte $L=k(\theta)$, yse $\vec{\rightarrow}, y^{\mid-1},\langle x, y\rangle$ ond canpute det it paning matix (Vendermode)

Integral bases
corollany if L is a numberfield then θ_{L} is finite treer $E_{\text {on idele (ie.a }}$ Inttice in Las a Merectar space) Pf Pick a basis ot y ca coussing of elements of $O L$ $\alpha_{1} \ldots \alpha_{n}$ The or car $\beta \in \theta_{2},\left\langle\alpha_{i} \mid \beta\right\rangle \in R$ This y ires on yper bour on θ_{L}. $/ \mathrm{L}$ nainity is petect

Ideals in rings of integers $L=\#$ feid

$$
2 \times 3=(1+\sqrt{-5})(1-\sqrt{-5}) \text { in } \mathbb{Z}[\sqrt{-3}]
$$

Kummer fix this by adding "ideal nmbes" ie. $\operatorname{gcd}(2,1+r-5)$
Dedekind: insted, cons.de setut mittpes
$R=n \mathrm{y}$, $I \subset R$ san kal If $=x, y \in I \Rightarrow x+y \in I$
prenmslik \Rightarrow

$$
x \in-I, R \in x_{y} \in \mathbb{X}
$$

θ_{L} is noetheion ($A C C$)

Dedekind domains
An integal doman Rs a Dedekind domain if
$\Rightarrow R$ is noetherim

- Ris intersally clused, a frace R)
- Evry noncer pime , beal 's maximal
 then $x \in I$ or $y \in I$ $(e y, z)$

Rings of integers are Dedekind domains
$L=$ freld
Thearen $O_{L, i s}$ a Dedekind dancin. $\alpha \neq 0$
in netterim closed (e, Nomlica (α))
let I be a nonzes , ine ideal. The $I n R \neq\{0\}$
is a nonzer fomeizleal, soy (p)

a is intera' doman. so an treld

$$
\begin{gathered}
x^{n}+a_{1} x^{n-1}+\cdots+q_{n}=0-a_{1}=x\left(x^{n-1}+a, x^{-1+}+\infty\right) \\
\text { so } \frac{I}{m a x} \operatorname{mal} .
\end{gathered}
$$

Statement of unique factorization in a Dedekind domain The oren For R a Dedekind domain, every nus res icleal I commits a fucturzation as. P..... for where $f_{1} . . f$ fr are prime ideals. Imathtrak whish is -1,yre y to antes (Note: no vats!)

A lemma on products of prime ideals $R=$ Dedeund
Lenma: for evey ninzeo, denl I teman
$\exists f_{1} \ldots$ frprrme nolcals s.t. $I \geq f_{1} \cdots R_{r}$
Pf othewise, find a maximul conterexapl which canit be pme, $\lrcorner \exists x_{1} y \in R$ s.t $x y \in I, w+x+I, y+I \neq \frac{I}{v}$
$Y_{1} \cdots e_{-} q_{1} \cdots z_{3} f_{1} \cdots r_{q} \ldots z$

