More on unique factorization in rings of integers

HW1 due Thursday 10/15: please submit via CoCalc. (If you have trouble, PM me on Zulip.)
See Zulip/Homework Q\&A for clarifications.
Supplementary problem solving sessions: see Zulip/General announcements.

Discriminant of an integral basis
of K
$K=\#$ field $\alpha_{1} \ldots \alpha_{n} \in K$ basis as core sana
discriminant $d\left(\alpha_{1} \ldots \alpha_{n}\right)=\operatorname{det}\left(\frac{A}{\sigma_{T} \cdot \alpha_{l}}\right)_{i j j}^{2}$
$\sigma_{1} \ldots \sigma_{n}: K \hookrightarrow \overline{\operatorname{le}}$
$\in \mathbb{C l}$ ironist
Equivalently, $d\left(\alpha \ldots \alpha_{1}\right)=\operatorname{det}$ under $\sigma_{a 1}(\bar{\alpha} / \alpha)$

$$
b / c \operatorname{Trace} L_{K}\left(\alpha_{i} \alpha_{j}\right)=\sum_{K}\left(\sigma_{K} \alpha_{i}\right)\left(\sigma_{K}{ }^{\left(\text {Trace }_{j}\right)}\right.
$$

$=\left(A^{\top} A\right)_{c j}$

Comparison of integral bases and their discriminants Note if $\alpha_{1} \ldots \alpha_{n} \in Q_{K}$, then $d\left(\alpha, \alpha_{1}\right) \in \mathbb{Z}$ Uberation: if $\nexists \alpha_{1}+\cdots+\pi \alpha_{n} \subseteq R \beta_{1}+\cdots+\pi \beta_{n}$ then $d\left(\alpha \ldots \alpha_{n}\right)=d\left(\beta_{1} \ldots \beta_{2}\right) c^{2}$

$$
c=\left[R \beta_{1}+\cdots+R_{n}: R_{1}+\cdots+R \alpha_{n}\right]
$$

Corollary Anyprimetaitor of $\left.Q_{k}: \mathbb{R}_{1}, \cdots+\mathbb{R}_{1}\right]$ if $\alpha_{1} \alpha_{n} \in o_{k}$ appears at least truce in prime factorization of $d\left(\alpha_{1} \cdots \alpha_{n}\right)$

Statement of unique factorization for Dedekind domains
A Dedekind domain is an integral
domain chichis
-noethe ian and

- intescully closed in its traction field
- such that every nates prime ideal 13 maxima!
Example OK where $K=\#$ field

Lemma from last time $R=$ Dedekind domain The wren Every nonzero ideal of Ram be writteras a product of pome rlleals Uniquely up to oder.
Lemma For ICR nonzeroideal,
\exists ponzeopives fir for
st I $\Rightarrow f_{1} \cdots$ er

The "multiplicative inverse" of a prime ideal $\quad 12=$ Dedeknd Lemmat $f \subset R$ be a nmzer pmeideal damain Define $f^{-1}=\{x \in \operatorname{Frac}(R): x p \leq R\}$.
Then formyionzes ideal I of R

$$
I_{f}^{-1}=\left\langle\sum_{i} a_{i} x_{i} a_{i} \in I, x_{i} \in f^{-1} \neq I\right.
$$

trputiuler, $P_{\pi}^{1} \neq R$, pick $a \in \mathbb{R}, \quad a \neq 0$
Pf poe th.s firt. ryply previos lemm set $a^{-1} b \in f^{-1}$.

$$
f \geqslant(\alpha) \geqslant f_{0} \cdots f_{0}
$$

The "multiplicative inverse" of a prime ideal (contd.)
suppose $I_{p 1}=I \quad \alpha_{1} \ldots \alpha_{n}$ gereatos of I
For $x \in p^{-1}, \quad x \alpha_{i}=\sum \alpha_{i}, \alpha_{j} \quad \alpha_{i j} \in R$
cayly-Itamilton

$$
\operatorname{det}\left(x I_{n}-\left(a_{;} ;\right)\right)=0
$$

R integrally clos Λ

$$
x \in R \Rightarrow p^{1}=R \Rightarrow \leqslant
$$

Existence of prime factorizations
sep ose existerce tails. Sinee R is reterion
can find a maxmal counterexmple I
Piek a maximal ideal f II
By prenos lenma, $I \nsubseteq \frac{I}{r} e^{-1} \leqslant f f^{-1} \equiv R$
Then $I=f f_{1} \cdots f r$

$$
=f_{1} \cdots f_{r}
$$

$$
=I_{\mathbb{P}^{+}} f^{=}
$$

Uniqueness of prime factorizations
say $I=f_{1} \cdots f_{r}=q_{1} \cdots t_{s}$ where f_{1} and ε, are nazeroprines
Sine p_{i} is prime. $f_{j} \leqslant q_{j}$ far junes $=1 / \mathrm{coth}$
$R_{1}^{-1} I=f_{2} \cdots f_{r}=q_{1} \ldots g_{j}^{\prime} q_{s}$ continue until ore site is exhausted.

Fractional ideals $\quad K=\#$ field
A tractional cleal of K is a nonzeo finitely grenesated θ_{K} isumable of K. (onsideal of θ_{k} as nitegral idenls) pape The tactional deals form mabelion yrep under nultplicatur, with identits, $(D)=\theta_{K}$, and $I^{-1}=\left\{x \in K: x I \subseteq \theta_{K}\right\}$ \& unigue factorzation into pames.

The ideal class group of a number field

$$
J K=\{\text { Fractienal, ileals\} }
$$

$P K=\{$ prnaipal fuctionalibuals $\}$
class goupelk= JK/PK

A fundamental exact sequence

