Lattices

PS2 is posted (due Oct 22).

From BallotTrax Notifications <updates@caballottrax
Subject $\mathbf{2 0 2 0}$ General Election: Ballot Status Update
Reply to Vote-By-Mail Team votebymail@sdcounty.ca.gov To ksked@gmail.com

Hello KIRAN KEDLAYA,

This is a message from San Diego Registrar of Voters. Your ballot for the 2020 General Election was received and will be counted. Thank you for voting!

Share that you voted!

Facebook I I Twitter

Lattices in rational vector spaces
$V=$ finte dim \mathbb{Q}-recto space
$L C V$ is a lattice it free L is a finitely greeted \mathbb{Z}-submod. which spans V over al\$ "b dd"
eg. for K a nunterfield, θ_{K} is a iatticein K

Lattices in Euclidean spaces
V is a finite-dim R-vecspace with a positive-defunte ine pookct
$L \subset V$ coppete is athice if L s a finsen elisock
R-spomodite -f V whode R-spe i. V
$\operatorname{rakL} L=\operatorname{dim} R($ so not $R+2 \sqrt{2} \subset \mathbb{R})$ v / L is corpact

Lattices in the wider world

- Chemistry and materials
- Telecommunications/coding theory

Conway \& Sloane

- Cryptography (especially post-quantum)
sphere parcckings,
latticusks mp
(SPRAG)

The lattice of a number field: imaginary quadratic case

The lattice of a number field: real quadratic case

$$
\begin{aligned}
& \mathbb{Z}(\sqrt{2}) \subset \mathbb{R} \times \mathbb{R} \\
& (a+6 \sqrt{2}) \mapsto(a+b \sqrt{2}, \\
& a-6 \sqrt{2} 1 \\
& \begin{array}{l}
\text { range }(-10,10)] \\
1=[(x, y) \text { for } x, y \text { in } 1 \text { if abs }(x)<=10 \text { and abs }(y)<=10]
\end{array} \\
& \begin{array}{l}
\text { list_plot(1, aspect_ratio=1) }+ \text { plot }(1 / x,(x, 0.1,10), \text { color="red" })+ \\
\text { plot }(-1 / x,(x, 0.1,10), ~ c o l o r=" r e d ")
\end{array} \\
& \operatorname{plot}(-1 / x,(x, 0.1,10), \quad \text { color="red" })
\end{aligned}
$$

The signature of a number field \qquad $\left.a\left(L^{(}\right)\right) \sim\left(L_{1}\right)$ For K a number field with ($K:(2)=n$. the signature of K is the pair (rf_{2})
$r_{1}=\#$ of real embeddings: $K \hookrightarrow \mathbb{R}$
$r_{2}=\#$ of paid of op ${ }^{k x} \quad k \hookrightarrow \mathbb{C}$
Note: $r_{1}+2 r_{2}=n_{\text {es. } n=2}^{\text {end }} \quad \underline{k} \longrightarrow \mathbb{C}^{2 C e}$
real quartic $\sum_{2}, 0$, ing quadratic $=(0,1)$

The additive lattice of a number field $K($ Mna Kouski)

K_{\circledR} carries stand ${ }^{2}$ Hermition merpodut

$$
\langle x, y\rangle=\sum_{\Gamma} \overline{x_{\tau}} y_{T}
$$

F: $K_{\mathbb{C}} \rightarrow K_{\mathbb{C}}{ }^{T}$ caples conjugation

$$
(F(z))_{T}=\bar{E}_{\bar{T}} \quad \bar{\tau}=c c \cdot T
$$

$K_{\mathbb{R}}=F$-ineriants of $K_{\mathbb{F}}, 0_{K} \leq K \hookrightarrow K_{\mathbb{R}}$, restrictorne $\underset{V \sim 1}{ }$

The trace pairing revisited

The covolume of a Euclidean lattice

The absolute discriminant as a covolume

$$
\begin{aligned}
& \text { LCV lattice in EvUdampare } \\
& \alpha_{1} \ldots \alpha_{n} \in L \text { basis } \\
& \text { the cardure }=\left(\operatorname{det}\left(\left\langle\alpha_{1}, j_{j}\right\rangle_{1 j}\right)\right)^{1 / 2} \\
& \text { in cuse of } \theta_{K} \subset K, R \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { s-mal } 01 y \text { if } I=\text { deal } \\
& \text { (coalre of } I)^{2}=(\text { disumimetot I) } \\
& =\| n \cdot s c) \theta<\| \cdot\left(\theta_{k}: I\right)^{2}
\end{aligned}
$$

es. for Garss: lathice.
(covolume $\left.\right|^{2}=4$, not 1

$$
(d v c=-4)
$$

