More applications of lattices in number theory
Intro viced for (o (all: see course we b site or 2 vip (Geneal Announcements/ lo (all)

Reminder: small elements of ideals $K=\#$ field
Leman fir may nazeoided If OK, here
exists $\alpha \in I=\alpha \neq 0$ sit.
by qpilicationof
Munhousti's lattice punt theorem

Small ideals in ideal classes
lemari evey closs a Clk $=$ TKl Pk rootains, enintegial icleal of rorm $\leq\left(\frac{2}{\pi}\right)^{2} \sqrt{1 d x_{1}}$
Pf Pick aryingul the invel of (nitioptimal)
$A_{\text {f }} \rho^{\prime}>$ luenins lowna to find $\alpha \in I \quad \alpha<0$
si $N \operatorname{dam}(\alpha) \leq\left(\frac{2}{11}\right)^{r_{2}} \sqrt{d_{k} 1} \operatorname{Nam}(I)$
$\Rightarrow \operatorname{Nolm}\left(\underset{\substack{\theta_{k}}}{\alpha} \frac{T^{-1}}{T}\right) \leq\left(\frac{2}{\Gamma}\right)^{\prime 2} \sqrt{1 d x l}$
ctass of $\underline{\underline{I}}^{-1}$

There are only finitely many ideals of a given norm
lemma For an positive inter N, \exists furitly may ideals of θ_{k} of nom N.
Pf $N_{o r m}(I)=\left[\theta_{k}\right.$ II]
in fact, orly finely many sur maps of O_{g} of
index N, berate thy all suntan Nor
NOV $\subseteq I \subseteq \theta_{k}$

Finiteness of the class group
Theoren Clk is a friteabelion suap 1f Be perias slides

- pair class contans anintoculideal of noln $\leqslant \rightarrow$
- the re iden's care frama frate set

A multiplicative version of Minkowski theory

$$
\begin{aligned}
& K \rightarrow K_{\mathbb{R}} \rightarrow K_{\mathbb{C}}=\Pi \mathbb{C} \\
& K_{\mathbb{R}^{x}}\left(K_{\mathbb{C}}^{*}\right) \mathbb{C}_{T}^{*} \mathbb{C}^{\star} \\
& =K_{R}-K_{c}{ }^{\phi} \\
& K_{R^{x}} \xrightarrow{\log } \mathbb{R}^{r} r_{1}^{+}+r_{2} \\
& =\left(R^{x}\right)^{r_{1}} \times\left(Q^{\lambda}\right)^{r_{2}} \rho\left(\log \left|x_{T_{1}}\right|, \log \left|x_{T_{2}}\right| \ldots\right) \\
& K^{*} \rightarrow K_{R}^{*} \xrightarrow{*} \mathbb{R}^{*} \mathbb{R}_{1}+r_{2}
\end{aligned}
$$

The norm functional
intereged in units of θ_{k}. There have the poisty that $\left|N_{\text {olm }}(\alpha)\right|=1$

$$
=\prod_{I}|T(\alpha)| \Rightarrow \sum_{T} \log T(\alpha) \mid=0
$$

ine. image of θK inde
$K^{* r} \rightarrow K_{R}^{*} \xrightarrow[I_{S S}]{ }, \mathbb{R}^{r, T r_{2}}$ lan As a hypplare
(trace-zeo hyper lare).

$$
\underline{H}=\left\{0=\sum_{\text {Treal }}^{0} x_{T}+\sum_{T_{\text {Tomparpair }}} 2 x_{T}\right\}
$$

Visualization
$1=[(a+b * s q r t(2.0), a-b * s q r t(2.0))$ for $a \operatorname{in}$ range(-10,10) for b in range(-10,10)]
$1=[(x, y)$ for x, y in 1 if $0<=x$ and $x<=10$ and $0<=y$ and $y<=10]$
list_plot(l, aspect_ratio=1) + plot(1/x,(x,0.1,10), color="red") + plot(2/x, (x,0.2,10), color="green") + plot(7/x, (x,0.7,10), color="orange")

$1=[(\log (a+b * \operatorname{sqrt}(2.0)), \log (a-b * \operatorname{sqrt}(2.0)))$ for a in range (-10,10) for b in range (-10,10) if (a+b*sqrt(2.0) > 0 and $a-b * \operatorname{sqrt}(2.0)>0)]$ $l=[(x, y)$ for x, y in 1 if $-10<=x$ and $x<=10$ and $-10<=y$ and $y<=10]$
list_plot(1, aspect_ratio=1) + plot $(-x,(-3,3), \operatorname{color=} " r e d ")+\operatorname{plot}(\log (2.0)-x,(-2,3), \operatorname{color=}$ green") + plot(log(7.0)-x, (-1, 3$), \operatorname{color="orange")~}$

The kernel of the logarithm map
Let $\mu(K)$ be the sow if sods of vats in K.
This is a file sibgaup of θ K
if Y is a pamitre n-th cut of units,
$[\operatorname{LQ}(9): C l]=\varphi(n) \rightarrow \infty$)
leman mike Kernel of log: ROK $\rightarrow 1$ PA HW 1. (element o of kevel is a root

A lattice in the unit hyperplane
Theoren image of θ_{k}^{*} in H is a lattice
$\Rightarrow \theta_{k}$ is a fuitely gereated atelion arap
of sak $r_{1}+r_{2}-2$
(Drichlet unit the oren)
dscrete
cocumact

Discreteness
lemma: ay c>0, aly taitely many units $\alpha \in \theta_{k}^{*}$ sit. $-c<\log _{y} / T(\alpha) k<\in$ anledinss ofn.

Mucr wore is thace!

Cocompactness (if time permits)
Interesting port? Use $\frac{\text { vorngits }}{\text { inters it small norm. }}$

