Computational tools for algebraic number theory

Grubb video introduction to Coleric

Number theory as an empirical subject

a2+12- C2 quadratic veryonity (Legendre. Erss) prime nomber theorem (Gauss, de la bullée Poursin - Madamard) Fernat's last theorem Not last theorem Not last theorem Not last theorem (Taiyana, Shimur, Inc.), (remona) and the Hyphermer (Taiyana, Shimur, Inc.), (remona) miles. Taylor - lucks) Alt Here (E.M. is S)

95800^4 + 217519^4 + 414560^4 = 422481^4

The L-Functions and Modular Forms Database

https://nww. Infold.org

Absence of evidence vs. evidence of absence

A mathematician is like a blind person in a dark room looking for a black cat which isn't there. -- attribution unknown

MXI=x3+... routs X, M2 43 ER $(x, -d_2)^2 (d_1 - d_3)^2 (d_2 - d_3)^2 > 0$ FX, EIR X2, X3 E [- IR

Active tools for computational number theory

- Henri Cohen • <u>Pari/GP</u> (open-source, custom language or C API)
- <u>Magma</u> (closed-source, custom language) US e dire to ral, sfitting
 <u>SageMath</u> (open-source, Python) (ything
 Nome (open source, lulia: part of the Open ration)
- Nemo (open-source, Julia; part of the Oscar project)

PGri/GPE Sare Math

<u>A quick start with CoCalc</u>

See Thomas Grubb's video introduction.

Note: CoCalc can only provide access to open-source platforms (this excludes Magma).

Number fields in SageMath

Examples of constructing number fields:

- Quadratic fields (real or imaginary)
- Cyclotomic fields
- Adjoining a root of a polynomial
- Splitting field of a polynomial
- Iterated extensions

More functionality as time permits

- Trace and norm
- Discriminant
- Minimal polynomial
- Ring of integers
- Class number
- Unit group
- Factorization (in class number 1 cases)

<pre>In [7]: K = QuadraticField(.1)</pre>
In [8]: K Out[8]: Number Field in a with defining polynomial x^2 + 1 with a = 1*I
In [9]: K(5).factor <u>()</u> Out[9]: (a) * (-a - 2) * (2*a + 1)
In [10]: K2 = QuadraticField <u>(2)</u>
In [11]: K2(7).factor <u>()</u> Out[11]: (-1) * (-2*a + 1) * (2*a + 1)
In [12]: K3 = CyclotomicField(5)
In [15]: z = K3.gen()
In [16]: K3 <mark>_</mark> <z> = CyclotomicField<u>(5)</u></z>
In [17]: z^5 Out[17]: 1
In [18]: z.minpoly <u>()</u> Out[18]: x^4 + x^3 + x^2 + x + 1
<pre>In [19]: P_<x> = PolynomialRing(Rationals())</x></pre>
<pre>In [20]: K4₄<a> = NumberField(x^3-x+1)</pre>
In [21]: K4.discriminant <u>()</u> Out[21]: -23
In [22]: a^4 Out[22]: a^2 - a
In [23]: a.norm() Out[23]: -1
In [24]: a.trace()

In [25]:	K5 <pre>K5</pre> = (x^3-x+1).splitting_field()
	K5.degree <u>()</u>
Out[26]:	6
In [27]:	
Out[27]:	Number Field in b with defining polynomial x^6 + 3*x^5 + 19*x^4 + 35*x^3 + 127*x^2 + 73*x + 271
	<u>(x</u> ^3-x+1), roots(K5)
Out[29]:	[(1/69*b^5 + 2/69*b^4 + 13/69*b^3 + 2/69*b^2 + 12/23*b - 100/69, 1), (-3/575*b^5 - 3/575*b^4 - 1/575*b^3 + 147/575*b^2 + 6/23*b + 906/575, 1), (-16/1725*b^5 - 41/1725*b^4 - 14/75*b^3 - 491/1725*b^2 - 18/23*b - 218/1725, 1)]
In [30]:	K6 <mark>.</mark> <c> = NumberField(x^3-x+a)</c>
In [31]:	Кб
Out[31]:	Number Field in c with defining polynomial $x^3 - x + a$ over its base field
In [32]:	K4
Out[32]:	Number Field in a with defining polynomial x^3 - x + 1
In [34]:	K4.class_number()
Out[34]:	1
In [35]:	K4.ring_of_integers <u>()</u>
Out[35]:	Maximal Order in Number Field in a with defining polynomial x^3 - x + 1
In [36]:	R = K4.ring_of_integers <u>()</u>
In [39]:	K4.unit_group <u>()</u>
Out[39]:	Unit group with structure C2 x Z of Number Field in a with defining polynomial x^3 - x + 1 $$
In [41]:	<pre>l = K4.unit_group().gens()</pre>
In [44]:	K4 <u>(</u> [[]])
Out[44]:	a
In [45]:	a.multiplicative_order <u>()</u>
	Infinity

Out[45]: +Infinity