Extension of valuations

I am planning to post some supplemental notes related to this lecture.
Complete fields

Let L/K be a finite extension of fields. Fix a multiplicative valuation $|\cdot|_L$ on L.

Does this extend to a multiplicative valuation $|\cdot|_K$ on K? If so, in how many ways?

Q.5.: $\mathbb{R} \rightarrow \mathbb{C}$

In this lecture, assume K is complete.

It is true on a boolean value $|\cdot|_K$ on L such for all $x \in K$, $1 \cdot x^*_L = 1 \cdot x^*_K$?
Vector spaces over complete fields

Let K be a field complete with absolute value $|\cdot|_K$.

Let V be a finite-dimensional K-vector space.

Suppose given a function $|\cdot|_V: V \to \mathbb{R}$, such that:

1. $|v|_V \geq 0$ \quad $\forall v \in V$, $|v|_V = 0$ $\iff v = \mathbf{0}$

2. $|v, v_2|_V \leq |v|_V + |v_2|_V$

3. $|\alpha v|_V = |\alpha| \cdot |v|_V$ \quad $\forall \alpha \in K, v \in V$.

Then V is complete with $|\cdot|_V$. In fact, if $\mathbf{e}_1, \mathbf{e}_2, \ldots$ is a basis for V, set some triangle as if we used $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n \longrightarrow \mathbf{e}_{n+1}, \mathbf{e}_{n+2}, \ldots, \mathbf{e}_k$.
Vector spaces over complete fields

will show: \(\exists k, k_2 > 0 \) s.t. \(k_2 \| v \| \leq \| v \| \) for all \(v \in V \).

where \(\| \cdot \| \) is defined as on previous slide.

Easy: \(1 \| v \| = \| v \| \leq \| v \| \) for all \(v \in V \).

In fact:

\[n \geq 1 : \text{consider } \| v \| \text{ determined by } \{ v_1, \ldots, v_n \} \]

\[U + V_1 = \{ v + w : v \in U, w \in V_1 \} \] by induction on \(V_1 \).

So \(\exists \epsilon > 0 \) s.t. \(V_1 \supset V_i \) for all \(i \in I \) where \(V_i \) is complete.

\[\| v + e_i \| \geq \epsilon_i \] for \(v \in V \) and \(e_i \) is the smallest \(\epsilon_i \).

\(k_2 = \min \{ \epsilon_i, i \geq 0 \} \)
Extension of a complete field: statement

Let k be a field complete with a \mathbb{R}-valued norm $|\cdot|$. Let L/k be a finite extension of fields. Then there exists a unique absolute value $|\cdot|_L$ on L extending $|\cdot|_k$ and moreover L is complete with respect to $|\cdot|_L$.

[Keep a norm $|\cdot|_p$ of \mathbb{Q}, $L = \mathbb{Q}$ field, start with $|\cdot|_p$ on K. I set extension $|\cdot|_L$ for each prime \mathfrak{p} of K above p.]
Extension of a complete field: completeness

Given a extension \bar{L}/L.

where V has a finite dimensional \bar{K}-vector space.

then $\|V\|_L = \sup_{\|x\|_L = 1} \|x\|_V \leq \sup_{\|x\|_\bar{K} = 1} \|x\|_L$.

$\forall \bar{K} \in \bar{L}$

$=)$ L is complete.
Extension of a complete field: uniqueness

Say $|.|_{L}, |.|_{L_2}$ are the absolute values on \mathbb{L} extending $|.|_K$. They are in the same topology, so must be equivalent, i.e.

$$\exists \epsilon > 0 \text{ s.t. } |x|_{L_2} = |x|_{L} \leq \epsilon \quad \forall x \in L$$

$$|x|_L = 1 \text{ for } |x|_K > 1 \implies c = 1 \implies \exists \epsilon.$$
About archimedean completions: Ostrowski revisited

Then (Ostrowski) let K be a field complete with an archimedean absolute value. Then $K = \mathbb{R}$ or \mathbb{C}.

Sketch: K must be of char 0, so contains \mathbb{Q}. By Ostrowski, restriction of $|\cdot|_K$ to \mathbb{Q} is equivalent to $|\cdot|_\infty$.

\Rightarrow $\mathbb{R} \subseteq K$

Next: $x \not\in \mathbb{R}$, then x is quadratic over \mathbb{R}.

Idea: look at $x^2 - \tau(x)(2)x + \nu(x)(2)$ in K show this must take value 0.
Extension of a complete field: a candidate

Now suppose K is a complete field and \mathbb{A}_F is its absolute value. If \mathbb{A}_F contains K, then, it must be that $x_1 = |\text{Num}_{\mathbb{A}_F/K}(x)|_{\mathbb{A}_F}$.

For L/K, consider $\text{Ext}_{L/K}(x)$.

- If L/K contains \mathbb{A}_F, then $x_1 \in \mathbb{A}_F$.
- If x_1, then $g(x)_{L} = x_{\mathbb{A}_F}$ is a complete extension of $|x| L$.
- $1_{x_{L}} = 1 \times 1_{L} / y_{L}$. $1_{x_{L}} = 0 \Leftrightarrow x = 0$.

(Hand-drawn annotations:)

\[1_{x_{L}} = |\text{Num}_{\mathbb{A}_F/K}(x)|_{K} \]
Extension of a complete field: the triangle inequality?

\[\text{Let } x, y \in \mathbb{K}, \quad |x|_\mathbb{K} = \text{Max} \{ |x|_m, |x|_n, \ldots, |x|_m \} \]

\[|x + y|_\mathbb{K} \leq \text{Max} \{ |x|_\mathbb{K}, |y|_\mathbb{K} \} \]

We can assume \(|x|_\mathbb{K} \leq |y|_\mathbb{K} = 1 \) \(|x/y|_\mathbb{K} \leq 1 \).

\[|1/\mathbb{K} + 1|_\mathbb{K} \leq 1 \cdot \]

At \(\mathbb{F}(T) \) be minimal of \(\mathbb{K} \) are \(\mathbb{K} \) (irreducible)

\[T^m + a_1 T^{m-1} + \ldots + a_m. \quad \text{Given } \lambda \text{ are } \lambda \mathbb{K} \leq 1 \]

where \(\lambda_0, \lambda_1, \ldots, \lambda_{m-1} \mathbb{K} \leq 1 \).
Hensel's lemma will tell us that many polynomials over K are actually reducible.