Extension of valuations

I am planning to post some supplemental notes related to this lecture.

Complete fields
let L/K be a Anite extensw ot tields
Fi> a mult,picative valuation $1 \cdot k$ on K
Q - Dies this extend twa multrisactive

- If 10 , if Law may may? ValuationL?
e.s. $12 \rightarrow \mathbb{C}$
e;imislechre assme K iscomple

Vector spaces over complete fields
let k be a field complete ant absolute value Ilk
le $t v$ be a $t_{n i t}$ dimensional vechospuce．
suppose sire a \neq－chin 1．12：$V \rightarrow I R$ rit．

$$
\begin{aligned}
& \text { IVリン0 } \forall v \in V, ~ ル レ=0<1 \Downarrow=0 \\
& \left|v_{1}+v_{2}\right| v \leq\left|v_{1} l_{v}+v_{2}\right| v \\
& |\lambda v|_{v}=|\lambda|_{K}|v|_{v} \quad \lambda \epsilon K, v \in V \text {. }
\end{aligned}
$$

The V is complete wot li）in fact，it ip ila abuses $H_{1} \ldots e$－of V_{1} vet same tocibyy as it I used $\lambda_{1} c_{1}+\cdots \lambda_{n} e_{n} \longrightarrow \max \left\langle 1 \lambda_{1} \|_{x} \ldots / \lambda \lambda_{K}\right\}$

Vector spaces over complete fields
will show: $\exists K, K_{2}>0$ s.t. $K_{2} 1_{s y b} \leqslant 1 I_{v} \leqslant K 1 I_{s}$
waret isp is cutwed asmpunow slide

$n=1$: endenti- I Iv datemind by ts ratren.1: Packityi...n\}
ary ire amzer t
Lit $V_{i}=s_{p}$ in it $e_{1} \cdots \widehat{e_{i}} \widehat{e n}_{n}$-b) inutis V_{i} sompte
so 子epo rit. Vucki
$\Rightarrow V_{i}$ is closeyts $1 V^{2}$.
$\left|v+e_{i}\right| \geqslant \varepsilon_{i}$
Non $\operatorname{la}_{1} \lambda_{1} . . \lambda_{n \in k}$
$\Rightarrow V_{i+1} e_{i}$ is aijo dosed.

Extension of a complete field: statement $/ \underline{n_{u}}$ h v.z l
Than let k be a ferd cupete whitabs value live ut L / k be a tolte exterin. 1 frille.
The trexensts a inigre abolte wille $1 / 2$ on Lextendin, llk
andmoreore L is auplete with repectto

Extension of a complete field: completeness

$$
\begin{aligned}
& \text { Given } 4 \text { oxterion } 1 / L \\
& \text { vaw } L \text { as a tnte-dmersmal Krectispana }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow L \text { is isplet. }
\end{aligned}
$$

Extension of a complete field: uniqueness
 cyteding I/k.
They Mexm the sare tupulogy. So mustle equanbx, ie

About archimedean completions: Ostrowski revisited Tha (Ostrowski) Let khe a fidd ioplete wA an wahineden abolote value, he $K \in \mathbb{R}$ of \mathbb{C}
If shehen: K myt u of cher 0 , oo contairs \mathbb{R}. is y Ostruackil, resinction I Ik to φ y equivent to $\Rightarrow \mathbb{R} \leq K$
Mextste: it $x \in K-\mathbb{R}$, the x is ainalatic $r=\mathbb{R}$.
 as a tultor $z \in \mathbb{C} \times$ shou this mot take mive 0 .

Extension of a complete field: a candidate
If eyterinut Ilk is sim a nuna chimedom andre

$$
\begin{aligned}
& e_{\mid x l_{L}}^{e_{L}}=\left|N_{U / m_{L / K}}(x)\right|_{K}^{1 /[L: K]} \\
& \text { (it L/K balois, migenges) } \Rightarrow \text { vscbil(LIK) } \\
& 6 / 1 \rightarrow|g(x)|_{2}=1 \times / L \\
& \left(x, \rightarrow \lg \left(x \|_{L} \text { y ald a als vate extending } \mid 1 K .\right)\right. \\
& \left.x^{\prime} x^{\prime}\right|_{L}=\left|x_{L}\right|^{\prime} y^{\prime} . \quad \mid x_{L}=0 \Leftarrow>x=0 \text {. }
\end{aligned}
$$

Extension of a complete field: the triangle inequality?
$\left.c_{n d, ~ d i t e ~} \mid x\right)_{L}=\left|\operatorname{Norm}_{L / K}(x)\right|_{K}^{\left.1 / C_{L} \cdot K\right]}$
monthistosatis

$$
|x+y|_{L} \in \max _{\sim}\left\{\left|x_{L},\right| y_{L}\right\}
$$

Lng asia $1 \times 1 / \leq 1 y / L=1 x /\left.y\right|_{L} \leq 1$

$$
\underset{\text { repel to }}{\text { rep }}\left|\frac{x}{y}+1\right|_{b \leq 1}
$$

ut P(T) be mingily of $\# y$ are K (irrediculb $)$
$\therefore T^{m}+a_{1} T^{m 1}+\cdots+a_{m}$. Give lank ≤ 1 $\xrightarrow{\Longrightarrow}\left|a,\left.\right|_{k}, \ldots\right| a_{m} \mathcal{I}^{\prime} k \leq 1$.

Preview of Hensel's lemma
Hequ's Emana wil tellus tanat many polyan.uls ore a ctally redrible.

