Hensel's lemma

HW 8 is posted. As usual, watch Zulip for corrections/clarifications/extra hints.

Also posted: notes on extension of valuations. These give a proof of the existence statement from the previous lecture using ideas from functional analysis, without separating the archimedean and nonarchimedean cases. (But I won't go over this approach in lecture.)

Reminder: extension of valuations
Let K be a tied caplete wo a absolute walrelik. The t - ay tarite axtersun L of K, there exista a ungre exterimot I IK to mabsolte ralvenL And Forall $\alpha \in L,\left|\alpha L_{L}=1 \mathrm{Nom} \mu_{k}(\alpha)\right|_{k}^{\prime}(L i \cdot k)$
lust theive shined it extersen pxits

- it is unigre
- Liscorpute

In nonchhimele cae,

- formla kulds s. $|\alpha|_{L} \leq 1 \Rightarrow|\alpha+2|_{L} \leq 1$.

How this applies to number fields
Let K be a nuable fiela
let f be a prome of K, cutine $\mid l_{f}=c^{-v_{f}(.)}$
let K_{p} be corpletion of H wost. IV f
fos $\sin C>1$
let $L / 2$ be a xate extension.
$L \longleftrightarrow L K_{p} \quad$ ir. w.te $L=K(\alpha)$
furike extesimot $K_{p} \quad L K_{p}=K_{f}(\alpha)$
Su, thas - - -nigne exterion ot l l p which l.estuct tu L.
is the 's extensin unisn? No!

How this applies to number fields

$$
\left.\sin C_{1}\right)=(2+i)(2-i)
$$

e.s. $K=A, q=(5) L=M(i)$

I 1 s or te exphans $t<2$ to ungs, as $1 I_{2+i}-11_{2-a}$

$$
\left(2_{+i} i_{2-i}=1\right)
$$

point: $Q_{5} \cdot \mathbb{Q}(i)=\mathscr{Q}_{5}(i) \cong \mathbb{C}_{5}^{2-1}$ l.case $\pm \gamma-1 \in \mathbb{Q}_{5}$
Q(i) $\otimes_{\mathbb{Q}} \mathbb{Q}_{5} \cong \mathbb{E} \mathbb{Q}_{5} 巴 \in E_{5}^{E}$ (aniogust
iseran! p cok, oxteimsut l_{p} to L we ir i-1 cosespandacle w / pares of Labore f

The missing step from last time
feld nunuthinnal $q=\left\{\alpha \epsilon_{L}^{\prime}|\alpha|<1\right\}$
ut K be capplete for als ulute vale lilk
rud to knm: For $f(x) \in K(x)$ is auclek $f(x)=a_{n} x^{n}+\ldots+a_{0}$, we mysthare

(0 ソ. $1+G_{n}=1,1 a_{d} \leqslant 1$, the $\left.19_{1}\right) \leqslant 1$ ب! $K=4 l_{2} x^{2}+\frac{1}{2} x+1$ is aduli66

Hensel's lemma: statement

Let $f(y) \in \theta_{k}[x]$ be a n'y umin whose inge $\bar{f}(x) \subset\left(\theta_{k / 6}\right)[x]$ is $\frac{a d}{f(x)}$ fuctos as $\bar{g}(x) \hat{L}(x)$ Kasabure
 in her $\bar{g}, \bar{h} \in(6 k / p)(x)$ frios as $g(x) h(x)$ $a d \operatorname{deg}(g)=\operatorname{ceg}(\bar{g})$
 $\bmod p$.
$x^{2}-1 \equiv\left(x-r_{1}\right)\left(x-r_{2}\right)$ nc1 ρ
Lf-1 ly herreltis sitwe wats on Rop
Fiore $\mathrm{c}_{\mathrm{c}}=2$, you get meplatid roit mod 2 .

Example: roots of unity θ p/r
the piynumial $x^{p-1}-1$ ore \mathbb{R}_{ρ}
fuctors combtly as $(x-1)(x-2) \cdots(x-p+1)$ modp
$\Rightarrow \pi_{p}$ contans a t/ll retot $(p-1)$ stot untay in pistar, $\operatorname{ARp}_{p}\left(g_{\rho-1}\right)-A_{p}$.
(e,. $\left.Q_{5} \rightarrow g_{y}=r_{-1}\right)$.
\Rightarrow the 8 -1).strotsintwity in \mathbb{R}_{6}, glus θ,
form n alternate set of disht

Hensel's lemma: proof $f(x) \in \theta_{K}(x) \quad \bar{f} \equiv \bar{g} h$
p.ck $S 0, h_{0} \in \theta_{k}(x) \quad \bar{S}_{0}=\bar{S}, \bar{h}_{0}=\bar{h} \quad \bar{a} \bar{i}+\bar{i} \cdot \bar{h}=1$. pick $a, b \in \theta_{4}(x)<H_{d \in s} s_{0}=d$, y
The $1 / \mathrm{c}$ tud $\pi t \mathrm{t}$ s.t. f 三gho mud π ad $\mathrm{ag}_{0}+6 h_{0}=1$ $\begin{aligned} & \text { unt g, h, sit. } g_{1} ミ g_{0} \operatorname{rod} \pi \\ & h_{1} \equiv h_{0} \bmod \pi \\ & \pi\end{aligned} \quad s_{1}=\operatorname{deg} j$,
ad $f=9, h,\left(m o d\right.$ inde: T^{2}). (and tranepe at

From Hensel's lemma to the missing step

Newton polygons
广
to stody fucanzatons in

$$
\mathbb{C}((x)
$$

